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Abstract—Consider the problem of universally communicating
over an arbitrarily varying channel, i.e., a channel comprised
of an unknown, arbitrary sequence of memoryless channels.
Interestingly, it is shown that there is a communication sys-
tem using feedback and common randomness that asymptoti-
cally attains, with high probability, the capacity of the time-
averaged channel, universally for every sequence of channels.
This attainable rate is optimal under certain conditions. While
no prior knowledge of the channel sequence is assumed, the
capacity of the time-averaged channel meets or exceeds the
traditional arbitrarily varying channel (AVC) capacity for every
memoryless AVC defined over the same alphabets, and therefore
the system universally attains the random code AVC capacity,
without knowledge of the AVC parameters. The presented system
combines rateless coding with a universal prediction scheme for
the input “prior” distribution. The determination of the input
behavior by universally predicting the prior used to randomly
generate the codebook, plays a major role in the presented result.

I. INTRODUCTION

Let us consider the problem of communicating over an
unknown and arbitrarily varying channel, with the help of
feedback. The target is to minimize the assumptions on the
communication channel as much as possible, while using
the feedback link to learn the channel. The main questions
with respect to such channels are how to define the expected
communication rates, and how to attain them universally,
without channel knowledge.

The traditional models for unknown channels [1] are com-
pound channels, in which a fixed channel law is selected
arbitrarily out of a family of known channels, and arbitrarily
varying channels (AVC’s), in which a sequence of channel
states is selected arbitrarily. The well known results for these
models [1] do not assume adaptation. Therefore, the AVC
capacity, which is the supremum of the communication rates
that can be obtained with vanishing error probability over any
possible occurrence of the channel state sequence, is in essence
a worst-case result. For example, if one assumes that yi, the
channel output at time i, is determined by the probability law
Wi(yi|xi) where xi is the channel input, and Wi is an arbitrary
sequence of conditional distributions, clearly no positive rate
can be guaranteed a-priori, as it may happen that all Wi

have zero capacity. Therefore, the AVC capacity is zero. This
capacity may be non-zero only if a constraint on Wi is defined.
In this paper the term “arbitrarily varying channel” is used in
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a loose manner, to describe any kind of unknown and arbitrary
change of the channel over time, while the acronym “AVC”
refers to the traditional model [1].

Other communication models, which allow positive commu-
nication rates over such AVC’s were proposed by the authors
and others [2], [3], [4], [5]. Although the channel models
considered in these papers are different, the common feature
distinguishing them from the traditional AVC setting is that
the communication rate is adaptively modified using feedback.
The target rate is known only a-posteriori, and is gradually
learned throughout the communication process. By adapting
the rate, one avoids worst case assumptions on the channel,
and can achieve positive communication rates when the chan-
nel is good. However, in the aforementioned communication
models, the distribution of the transmitted signal is fixed and
independent of the feedback, and only the rate is adapted.
Specifically in the “individual channel” model [4] for reasons
explained therein, the distribution of the channel input is fixed
to a predefined prior. Likewise, Eswaran et al [3] show that
for a fixed prior, the mutual information of the averaged
channel can be attained. Clearly, with this limitation, these
systems are incapable of universally attaining the channel
capacity in many cases of interest. Even in the simple case
where the channel is a compound memoryless channel, i.e.
the conditional distributions Wi = W are all constant but
unknown, capacity cannot be attained this way.

In a more recent paper [5], the problem of universal com-
munication was formulated as that of a competition against a
reference system, comprised of an encoder and a decoder with
limited capabilities. For the case where the channel is modulo-
additive with an individual, arbitrary noise sequence, it was
shown possible to asymptotically perform at least as well
as any finite-block system (which may be designed knowing
the noise sequence), without prior knowledge of the noise
sequence. However, this result crucially relies on the property
of the modulo-additive channel, that the capacity achieving
prior is the uniform i.i.d. prior for any noise distribution. To
extend the result to more general models, the input behavior
needs to be adapted. The key parameter to be adapted is the
“prior”, i.e. the distribution of the codebook (or equivalently
the channel input), since it plays a vital role in the converse
as well as the attainability proof of channel capacity and is
the main factor in adapting the message to the channel [6].

Loosely speaking, previous works achieve various kinds of
“mutual information” for a fixed prior and any channel from a
wide class, by mainly solving problems of universal decoding
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and rate adaptation. However to obtain more than the “mutual
information”, i.e. the “capacity”, the prior would need to be
selected in a universal way.

Prior adaptation using feedback is a well known practice
for static or semi-static channels. Two familiar examples are
bit and power loading performed in Digital Subscriber Lines
(DSL-s) [7], and precoding for in multi-antenna systems [8]
which is performed in practice in wireless standards such as
WiFi, WiMAX and LTE. If the channel can be assumed to be
static for a period of time sufficient to close a loop of channel
measurement, feedback and coding, then an input prior close
to the optimal one can be chosen. In the theoretical setting
of the compound memoryless channel where Pr(Yi|Xi) =
W (Yi|Xi), where W is unknown but fixed, a system with
feedback can asymptotically attain the channel capacity of
W , without prior knowledge of it, by using an asymptotically
small portion of the transmission time to estimate the channel,
and using an estimate of the optimal prior and the suitable rate
during the rest of the time [9]. All models for prior adaptation
that we are aware of, use the assumption that the knowledge
of the channel at a given time yields non trivial statistical
information about future channel states, but do not deal with
arbitrary variation.

The question dealt with in this paper is: assuming a channel
which is arbitrarily changing over time, is there any merit
in using feedback to adapt the input distribution, and what
rates can be guaranteed? Although the goal is to cope with
the most general variation of the channel (as in the unknown
vector channel model [5]), to start this exploration, let us focus
on channel models which are memoryless in the input, i.e.
whose behavior at a certain time does not depend on any
previous channel inputs. Specifically, the model assumed here
is of an unknown sequence of memoryless channels (which
is in essence an AVC without constraints). The motivation
for avoiding memory of the input can be appreciated by
considering the negative examples in [5].

Following is a brief overview of the structure and the results
of this paper. In Section II the problem is stated, and several
communication rates of interest are defined (as a function of
the channel sequence). In order to focus thoughts on questions
related to the problem of determining the prior, an abstract
model of the communication system is initially adopted,
stripping off the details of communication, such as decoding,
channel estimation, overheads, error probability, etc. An easier
synthetic problem is first presented, in which all previous
channels are known (Section III). This problem may represent
a “realistic” case where the channel changes its behavior in
a block-wise manner and remains i.i.d. memoryless during
each block (a subset of the original problem). This problem is
related to standard prediction problems (Section III-B), and
used as a tool to gain insight into the prediction problem
involved, present bounds on what can be achieved universally,
and develop the techniques that will be used later on. Even
for this easier problem, it is shown that there is no hope
to attain the channel capacity universally and one would
have to settle for lower rates (Section III-C). The attained
rate is the maximum over the prior, of the averaged mutual
information (Theorem 1). In Section IV, returning to the main

problem, it is shown that the previously attained rate is no
longer attainable. On the other hand, the capacity of the time-
averaged channel is the best achievable rate that does not
depend on the order of the channel sequence (Theorem 2), this
rate is indeed achievable (Theorem 3). Furthermore, this rate
meets or exceeds the AVC capacity, and essentially equals the
“empirical capacity” defined by Eswaran et al [3]. The scheme
that attains this rate is based on rateless coding and combines
a prior predictor. In Section IV-C, the communication scheme
and the prior predictor are presented, and in Section V the
main result (Theorem 3) is proven. Section VI is devoted to
discussion and comments.

II. NOTATION AND PROBLEM STATEMENT

A. Notation

Random variables are denoted by capital letters and vectors
by boldface. However, for probability distributions, which
are sometimes treated as vectors, regular capital letters are
used. Superscript and subscript indices are applied to vec-
tors to define subsequences in the standard way, i.e. xji ,
(xi, xi+1, ..., xj), xi , xi1
I(Q,W ) denotes the mutual information obtained when

using a prior Q over a channel W , i.e. it is the mutual informa-
tion I(Q,W ) = I(X;Y ) between two random variables with
the joint probability Pr(X,Y ) = Q(X) · W (Y |X). C(W )
denotes the channel capacity C(W ) = maxQ I(Q,W ). For
discrete channels, the channel W (y|x) is sometimes presented
as a matrix where W (y|x) is in the x-th column and the y-
th row. Logarithms and all information quantities are base 2
unless specified otherwise.

The unit simplex, i.e. the set of all probability measures on
X , is denoted by ∆X , {Q :

∑
x∈X Q(x) = 1}.

Ber(p) denotes a Bernoulli random variable with probability
p to be 1. Ind(·) denotes an indicator function of an event or
a condition, and equals 1 if the event occurs and 0 otherwise.
The notation “. . .” is used to denote simple mathematical
inductions, where the same rule is repeatedly applied, for
example an ≤ n · an−1 ≤ . . . ≤ n! · a0.

A hat �̂ denotes an estimated value, and a line � denotes
an average value. The empirical distribution of a vector x of
length n is a function representing the relative frequency of
each letter,

P̂x(x) =
∑n
i=1 Ind(xi = x)

n
, (1)

where the subscript identifies the vector. The conditional
empirical distribution of two equal length vectors x,y is
defined as

P̂y|x(y|x) =
P̂x,y(x, y)
P̂x(x)

. (2)

B. Problem setting

Let X ,Y be sets defining the input and output alphabets,
respectively. Both X ,Y are assumed to be finite, unless stated
otherwise.1 Let {Wi}ni=1 be a sequence of memoryless chan-
nels over n channel uses. Each Wi is a conditional distribution

1Note that the results in Section III,IV do not require Y to be finite
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Wi(y|x) where x ∈ X and y ∈ Y represent an input and
output symbol respectively. The conditional distribution of the
output vector Y given the input vector X is given by:

Pr(Y|X) =
n∏
i=1

Wi(Yi|Xi). (3)

The sequence of channels Wi is arbitrary and unknown to
the transmitter and the receiver. The existence of common
randomness (i.e. that the transmitter and the receiver both have
access to some random variable of choice) is assumed. There
exists a feedback link between the receiver and the transmitter.
To simplify, let us assume the feedback is completely reliable,
has unlimited bandwidth and is instantaneous, i.e. arrives to the
encoder before the next symbol.2 The system is rate adaptive,
which means that the message is represented by an infinite
bit sequence m∞0 , and the system may choose how many bits
to send. The error probability is measured only over the bits
which were actually sent (i.e. over the first dnRe bits, where
R is the rate reported by the receiver). The system setup is
presented in Figure 1.

To simplify, it is assumed that there are no constraints
on the channel input (such as power constraints). If such
constraints exist they can be accommodated by changing the
set of potential priors.

Since the channel sequence is arbitrary there is no positive
rate which can be guaranteed a-priori. Instead, a target rate
R(Wn

1 ) can be defined as a function of the channel sequence
Wn

1 .

Definition 1. A sequence of rate functions R(Wn
1 ) is said

to be asymptotically attainable, if for every ε, δ,∆ > 0 there
is n large enough such that there is a system with feedback
and common randomness over n channel uses, in which, for
every sequence {Wi}ni=1, the rate is R(Wn

1 )−∆ or more, with
probability of at least 1 − δ, while the probability of error is
at most ε.

In the next section several potential target rates are pro-
posed, and in what follows, we would ask which of these are
attainable.

C. Potential target rates

With respect to the sequence {Wi} various meaningful
information theoretic measures can be defined. The maximum
possible rate of reliable communication is the capacity when
the sequence is known a-priori (in other words, the capacity
with full, non causal, channel state information at the trans-
mitter and the receiver) and is given by:

C1(Wn
1 ) = max

{Qi}

1
n

n∑
i=1

I(Qi,Wi)

=
1
n

n∑
i=1

max
Q

I(Q,Wi) =
1
n

n∑
i=1

C(Wi).

(4)

Note that if constraints on the sequence {Qi} existed, (4)
would be an inequality (see [10]). The maximum rate that

2The asymptotical results hold also when feedback is band limited and
delayed.

can be obtained with a single fixed prior when the sequence
is known is:

C2(Wn
1 ) = max

Q

1
n

n∑
i=1

I (Q,Wi) . (5)

Lastly, the capacity of the time-averaged channel is:

C3(Wn
1 ) = max

Q
I

(
Q,

1
n

n∑
i=1

Wi

)
= C(W ), (6)

where the time-averaged channel is defined as

W (y|x) =
1
n

n∑
i=1

Wi(y|x). (7)

Clearly, C1 ≥ C2 ≥ C3 where the first inequality results
from the order of maximization and the other results from
the convexity of the mutual information with respect to the
channel. For each of the above target rates we would like to
find out whether it is achievable under the definitions above.
As shall be seen, C1 is not achievable, C3 is achievable, and
C2 is achievable only under further constraints imposed on the
problem.

A rigorous proof that C1 is the capacity of the channel
sequence is left out of the scope of this paper. For our purpose,
it is sufficient to observe that C1 is an upper bound on
the achievable rate, because the mutual information between
channel input and output is maximized by a memoryless (not
i.i.d.) input distribution

∏n
i=1Qi(xi). To see intuitively how

C1 can be achieved, consider that since n can be arbitrarily
large while the input and output alphabets, and thus the set
of channels, remain constant, one may sort the channels into
groups of similar channels, and apply block coding to each
group. A close result pertaining to stationary ergodic channels
appears in [11, (3.3.5)].

III. A SYNTHETIC “TOY” PROBLEM

In this section a synthetic problem is presented. This prob-
lem will help examine the achievability of the target rates
defined above in a simplified scenario, draw the links to
universal prediction, and introduce the techniques that will be
used in the sequel.

A. Problem description

Let us focus on the problem of setting a prior Q̂i at time
i. Assume that at each time instance i, the system has full
knowledge of the sequence of past channels W i−1

1 . The prior
prediction mechanism sets Q̂i based on the knowledge of
W i−1

1 . Then, I(Q̂i,Wi) bits are conveyed during time instance
i. A predictor Q̂i(W i−1

1 ) attains a given target rate R(Wn
1 ) if

1
n

∑n
i=1 I(Q̂i,Wi) ≥ R(Wn

1 )−δn for all sequences Wn
1 , and

δn −→
n→∞

0.
This abstract problem can apply to a situation where the

channel sequence is constant during long blocks, and changes
its value only from block to block, or from one transmission to
another. In this case i denotes the block index, and denoting
by m the constant block length, at most m · I(Q̂i,Wi) bits
can be sent in block i. If the channel is constant over long
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Fig. 1. A rate adaptive system with feedback

blocks it is reasonable to assume that past channels can be
estimated. The assumption that I(Q̂i,Wi) is achievable was
made, although this communication rate is unknown to the
transmitter in advance, i.e., the problem of rate adaptation is
ignored. Therefore the synthetic problem is a subset of the
original problem and upper bounds shown here apply also to
the original problem.

B. Classification as a universal prediction problem

Let us begin by discussing the achievability of C2 for the
synthetic problem. The target rate C2 is special in being an
additive function for each value of Q. Universally attaining
C2 under the conditions specified above, falls into a widely
studied category of universal prediction problems [12], [13],
[14], [15]. Below, this class of problems and some relevant
known results are reviewed.

These prediction problems have the following form: let
b ∈ B be a strategy in a set of possible strategies B, and x ∈ X
be a state of nature. A loss function l(b, x) associates a loss
with each combination of a strategy and a state of nature. The
total loss over n occurrences is defined as L =

∑n
i=1 l(bi, xi).

The universal predictor b̂i(xi−1
1 ) assigns the next strategy

given the past values of the sequence, and before seeing the
current value. There is a set of reference strategies {b(k)

i }Nk=1

(sometimes called experts), which are visible to the universal
predictor. The target of universal prediction is to provide a
predictor b̂i which is asymptotically and universally better than
any of the reference strategies, in the sense defined below.

For a given sequence xn1 , denote the losses of the universal
predictor and the reference strategies as L̂ ,

∑n
i=1 l(b̂i, xi)

and Lk ,
∑n
i=1 l(b

(k)
i , xi), respectively. Denote the regret

of the universal predictor with respect a specific reference
strategy as the excessive loss:

R(k) , L̂− Lk. (8)

Rk is a function of the sequence xn1 and the predictor. The
target of the universal predictor is to minimize the worst case
regret, i.e. attain

Rminimax , min
{b̂i(·)}

max
k

max
xn1
R(k). (9)

The reference strategies may be defined in several different
ways. In the simplest form of the problem the competition is
against the set of fixed strategies b(k)

i = b(k). The exact min-
imax solution is known only for very specific loss functions
[13, §8], and a solution guaranteeing maxxn1 ,k

R(k) −→
n→∞

0 is
not known for general loss functions. However there are many

prediction schemes which perform well for a wide range of
loss functions (see references above).

In the information theoretic framework, the log-loss
l(b, x) = log

(
1
b(x)

)
, where b(x) is a probability distribution

over X is the most familiar loss function, and used in ana-
lyzing universal source encoding schemes [12], since l(b, x)
represents the optimal encoding length of the symbol x when
assigned a probability b(x). It exhibits an asymptotical mini-
max regret of 1

nRminimax = O
(

logn
n

)
. However in the more

general setting the asymptotical minimax regret decreases in a
slower rate of 1

nRminimax = O
(

1√
n

)
. There are several loss

functions which are characterized by a “smoother” behavior
for which better minimax regret is obtained [13, Theorem 3.1,
Proposition 3.1]. For some of these loss functions, a simple
forecasting algorithm termed “Follow the leader” (FL) can be
used [13, §3.2] [16, Theorem 1]. In FL, the universal forecaster
picks at every iteration i the strategy that performed best in
the past, i.e. minimizes the cumulative loss over the instances
from 1 to i− 1.

The archetype of loss functions for which it is not possible
to obtain a better convergence rate than O

(
1√
n

)
is the

absolute loss l(b, x) = |b − x|, where x ∈ X = {0, 1}
and b ∈ B = [0, 1]. The proof for the lower bound on the
minimax regret [13, Theorem 3.7] is based on generating the
sequence xn1 randomly, and calculating the minimum expected
regret (over x). This value is a lower bound for the minimum-
maximum regret (9). To show that the regret is ω(

√
n) it is

enough to consider only two competitors – one forecasting a
constant zero, and one a constant one, and observe that since
the cumulative losses of the two competitors always sum up
to n, the minimum loss of the two competitors is a random
variable with a standard deviation of O(

√
n) which is upper

bounded by n
2 , and therefore its expected value is n

2 −O(
√
n),

whereas the expected loss of the best single strategy over the
random sequence cannot be better than n

2 . A similar idea
is used in the current paper, to prove lower bounds on the
regret in the current problems. For general loss functions, and
specifically for the absolute loss, the simple FL strategy does
not converge.

The problem of asymptotically attaining C2(Wn
1 ) is analo-

gous to the standard prediction problem, where the prior Qi
represents a strategy, and the channel Wi represents a state of
nature. The current problem is given in terms of gains rather
than losses, i.e. the loss is l(Q,W ) = −I(Q,W ). The regret
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Fig. 2. Example channels W0,W1

is therefore:

Rn(Q) =
n∑
i=1

I(Q,Wi)−
n∑
i=1

I(Q̂i,Wi). (10)

Note that the regret is defined in terms of bits rather than rates
(i.e. it is not normalized), from technical reasons.

C. A lower bound on the regret

A natural question to ask is, then: what is the asymptotical
form of the minimax regret expected in the current problem?
As will be shown, the prior prediction problem posed above,
includes as a special case the prediction problem with the
absolute loss function. Therefore, the asymptotical behavior
cannot be better than O(

√
n), and it is not possible to apply

the simple FL strategy.
The following example shows why the problem of attaining

C2 includes as a particular case the absolute loss function:

Example 1. Consider the quaternary to binary channel (|X | =
4, |Y| = 2), which may be in one of two states s ∈ {0, 1},
which define two conditional probability functions (shown as
|Y| × |X | matrices below):

W0(Y |X) =
[

1 0 1
2

1
2

0 1 1
2

1
2

]
W1(Y |X) =

[
1
2

1
2 1 0

1
2

1
2 0 1

]
.

(11)

By writing the input as two binary digits X = [X1, X2],
the channel can be defined as follows: if X2 = s then Y =
X1, otherwise, Y = Ber

(
1
2

)
. These channels are depicted

in Figure 2, where transitions are denoted by solid lines for
probability 1, and dashed lines for probability 1

2 . Now consider
the same prediction problem, under the simplifying assumption
that the channel Wi = Wsi is chosen only between the two
channels above, and the forecaster knows this limitation, i.e.
only the sequence of states si ∈ {0, 1} is unknown.

It is clear from convexity of the mutual information, and the
symmetry with respect to X1 (interchanging the values of X1

leads to the same mutual information), that any solution can
only be improved by taking a uniform distribution over X1.
Therefore, without loss of generality, the input distribution Q
can be defined by a single value q = Pr(X2 = 1) ∈ [0, 1], and
be written Q = [ 1

2 (1 − q), 1
2 (1 − q), 1

2q,
1
2q]. For this choice

the output will always be uniformly distributed Ber
(

1
2

)
. Now,

I(Q,W0) = H(Y )−H(Y |X)

= 1−
∑
x

Q(x)H(Y |X = x) = 1− q, (12)

and similarly I(Q,W1) = q, therefore:

I(Q,Ws) = 1− |s− q|. (13)

Hence, even under this limited scenario, the loss function
1 − I(Q,W ) behaves like the absolute loss function, and
therefore the normalized minimax regret (and the redundancy
in attaining C2) is at least O

(√
1
n

)
.

Note that the relation to the absolute loss implies that the
simple FL predictor Q̂i = argmax

Q

∑i−1
t=1 I(Q,Wt), cannot be

applied to the current problem. An example to illustrate this
and some further details are given in Appendix L.

Since the rest of the paper focuses on the rate function
C3, it is interesting to note that, although this rate is smaller,
in general, than C2, the minimum redundancy in obtaining it
cannot be better than O

(√
1
n

)
. To show this, it only need to

be shown that in the context of the counter-example shown
above, C2 = C3. For a specific sequence of channels, denote
by p the relative frequency with which channel W1 appears.
The averaged channel is (1 − p)W0 + pW1. It is easy to see
that the capacity of this channel is obtained by placing the
entire input probability on the two useful inputs of the channel
that appears most of the time. That is, if p ≥ 1

2 the input
probability is placed on the useful inputs of W1 and the rate
p · C(W1) = p is obtained, and otherwise (1− p) · C(W0) =
1− p is obtained. Hence the capacity of the averaged channel
is C3 = max(p, 1− p). On the other hand,

C2 = max
Q

((1− p) · I(Q,W0) + p · I(Q,W1))

= max
q∈[0,1]

((1− p) · (1− q) + pq) = max(p, 1− p).
(14)

The example above also shows that C1 is not universally
achievable. In the example, the capacities of the two channels
are C(Ws) = 1. Suppose the sequence of channel states
sn1 ∈ {0, 1}n is generated randomly i.i.d. Ber

(
1
2

)
. Then for

any sequential predictor of q, the expected loss in each time
instance is E[I(Q,Ws)] = 1

2 (1−q)+ 1
2q = 1

2 , while the target
rate is C1 = 1. Therefore the expected normalized regret with
respect to C1 is 1

2 , and the maximum regret (maximum over
the sequence {Wi}) is lower bounded by the expected regret.

To summarize, C1 is not universally achievable, and there-
fore C2 constitutes a reasonable target. Furthermore, the
minimax regret with respect to C2 is at least O

(√
1
n

)
, and

the simple FL predictor following the best a-posteriori strategy
does yield a vanishing regret.

D. A prediction algorithm

The prediction algorithm proposed below is based on a
well known technique of a weighted average predictor, using
exponential weighting [13, §2.1]. A minor difference with
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Q ∈ ∆X

wi(Q)

Q̂i

Fig. 3. An illustration of exponential weighting. The triangle represents
the unit simplex. The two peaks represent two priors Q which have a
relatively large gain

∑i−1
t=1 I(Q,Wi). The weight function wi(Q) combines

them exponentialy, and the predictor Q̂i (represented as a black spot) is the
weighted average.

respect to known results is the extension to a continuous set
of reference strategies.

A weight function w(Q) is any non-negative function w :
∆X → R+ with

∫
∆X

w(Q)dQ = 1. All integrals in the sequel
are by default over ∆X .

Define the following weight function:

wi(Q) =
eη
∑i−1
t=1 I(Q,Wt)∫

∆X
eη
∑i−1
t=1 I(Q̃,Wt)dQ̃

, (15)

and the predictor:

Q̂i =
∫

∆X

Q · wi(Q) · dQ. (16)

The weighting function gives a higher weight to priors that
succeeded in the past and the predictor averages the potential
priors with respect to the weight. This is illustrated in Fig. 3.
The following theorem gives a bound on the regret of this
predictor, which is proven in the next section.

Theorem 1. Let I(Q,W ), Q ∈ ∆X be bounded function 0 ≤
I(Q,W ) ≤ Imax which is concave in its first argument. Then
for n large enough so that ln(n)

n ≤ e−2, the predictor defined

by (15) and (16) with η =
√
|X | lnn
n · I−1

max yields

R =
1
n

n∑
i=1

I(Q̂i,Wi) ≥ C2(Wn
1 )− δ, (17)

with

δ = 2Imax ·
√

(|X| − 1) lnn
n

. (18)

Note that the theorem applies to gain functions more general
than the mutual information, since it uses only the properties
of concavity and boundness. In the case of mutual information
Imax equals

Imax = log min(|X |, |Y|). (19)

The convergence rate is O
(√

lnn
n

)
and is slightly worse

than the asymptotic bound of O
(√

1
n

)
from Section III-C.

The additional
√

lnn may be attributed to the fact the space
of reference predictors is continuous (it results from Lemma 2
stated below), but we do not know if this is the best conver-
gence rate.

E. Proof of Theorem 1

In this section the performance of the predictor (16) is
analyzed Theorem 1 is proven. Define the instantaneous regret
ri(Q) and the cumulative regret Ri(Q) as functions of Q:

ri(Q) = I(Q,Wi)− I(Q̂i,Wi), (20)

Ri(Q) =
i∑
t=1

rt(Q) =
i∑
t=1

I(Q,Wt)−
i∑
t=1

I(Q̂i,Wt). (21)

These functions express the regret with respect to a fixed
competing prior Q. The claim of the theorem is equivalent to
the claim that for all Q, Rn(Q) ≤ nδ. The dependence on Q
is sometimes omitted for brevity.

For η > 0 of choice, define the following potential function:

Φ(u) =
∫

∆X

eηu(Q)dQ, (22)

where u : ∆X → R is an arbitrary function defined over the
unit simplex. Note that for large values of η ·u, Φ(u) approx-
imates maxQ(u). As customary in this prediction technique,
the proof consists of two parts:

1) Bounding the growth rate of Φ(Ri(Q)) over i =
1, 2, . . . , n for any Q.

2) Relating maxQ{Rn(Q)} to Φ(Rn(Q)).

The techniques used below are based on Cesa-Bianchi and
Lugosi’s [13] (see Theorem 2.1, Corollary 2.2, Theorem 3.3).

Since I(Q,W ) is concave with respect to Q, then for any
weight function w(Q) and any Wi:∫

w(Q)ri(Q)dQ =
∫
w(Q)I(Q,Wi)dQ− I(Q̂i,Wi)

≤ I

(∫
w(Q)QdQ︸ ︷︷ ︸

Q̂i

,Wi

)
− I(Q̂i,Wi)

= 0.
(23)

Following [13] this inequality may be termed the “Blackwell
condition”. The meaning of this condition is that by choice
of w(Q) one can prevent an increase of Ri(Q) in a chosen
direction (w(Q) can be thought of as a unit vector in the
Hilbert space of functions over ∆X ). For the specific choice
of the weight function (15), this direction is proportional to
the gradient of Φ(R) with respect to R, thus preventing any
growth in this direction and leaving only second order terms
that contribute to the increase of Φ(Rn(Q)). Since the factor∑i
t=1 I(Q̂i,Wt) in (21) does not depend on Q, the weight

function (15) can be alternatively written as:

wi(Q) =
eηRi−1(Q)∫
eηRi−1(Q)dQ

. (24)

wi(Q) is indifferent to any constant addition to Ri−1(Q)
due to the normalization. The growth of the potential can be
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bounded as follows:

Φ(Ri) = Φ(Ri−1 + ri) =
∫
eηRi−1+ηridQ

=
∫
eηRi−1 · eηridQ

(24)=
∫
eηRi−1dQ ·

∫
wi(Q)eηridQ

= Φ(Ri−1) ·
∫
wi(Q)eηridQ,

(25)

Notice that ri ≤ Imax. Take η small enough that ηri ≤
ηImax ≤ 1 and use the following inequality (proven in
Appendix E):

Lemma 1. For x ∈ [−1, 1]:

1 + x ≤ ex ≤ 1 + x+ x2. (26)

Returning to (25):∫
wi(Q)eηridQ

(26)
≤
∫
wi(Q)

(
1 + ηri + (ηri)2

)
dQ

=
∫
w(Q)dQ+ η

∫
w(Q)ridQ︸ ︷︷ ︸
≤0,(23)

+η2

∫
w(Q)r2

i dQ

(23)
≤ 1 + η2I2

max

(26)
≤ eη

2I2max . (27)

Therefore recursively applying (25):

Φ(Rn)
(25),(27)
≤ eη

2I2maxΦ(Rn−1) ≤ . . . ≤ enη
2I2max · Φ(0).

(28)
Notice that Φ(0) =

∫
1dQ = vol(∆X ). This completes the

first part of showing that the increase in Φ(Rn) is bounded.
For the second part, the exponential weighting of a function
is related to its maximum, using the following lemma, which
proven in Appendix A:

Lemma 2. Let F (x) be a real non-negative bounded function
F : S → [a, b] concave in S, where S is a closed convex
vector region of dimension d, and let η satisfy η(b− a) ≥ d,
then

max
x∈S

F (x) ≤ 1
η

ln


∫
S

eηF (x)dx

vol(S)

+
d

η
ln
(
ηe(b− a)

d

)

=
1
η

ln
[

Φ(F )
Φ(0)

]
+
d

η
ln
(
ηe(b− a)

d

)
.

(29)

Let F (Q) = Rn(Q). In this case the convex region is ∆X
and therefore d = dim(∆X ) = |X| − 1. By (21) F can be
bounded by:

−
n∑
i=1

I(Q̂i,Wi)︸ ︷︷ ︸
,a

≤ F (Q) ≤ nImax −
n∑
i=1

I(Q̂i,Wi)︸ ︷︷ ︸
,b

, (30)

where the factor
∑n
i=1 I(Q̂i,Wi) is constant in Q, and b−a =

nImax. Assuming ηnImax ≥ d to satisfy the conditions of

Lemma 2, by (29):

Rn(Q) ≤ 1
η

ln
Φ(Rn(Q))

Φ(0)
+
d

η
ln
(
ηenImax

d

)
(28)
≤ nηI2

max +
d

η
ln
(
ηenImax

d

)
.

≤ nηI2
max +

d

η
ln (n) , ∆,

(31)

where in the last inequality it was assumed that ηeImax
d ≤ 1

(this would hold for η small enough). The following lemma
is used to optimize the RHS of (31) with respect to η:

Lemma 3. The unique minimum over t ∈ R+ of f(t) =

a · tα + b · t−β (a, b, α, β > 0) is obtained at t∗ =
(
bβ
aα

) 1
α+β

and equals

f(t∗) =
(
β

α

) α
α+β

[
1 +

α

β

]
· a

β
α+β · b

α
α+β . (32)

Particularly, for α = β = 1, i.e. f(t) = a · t + b
t the above

results in t∗ =
√

b
a and f(t∗) = 2

√
ab.

The proof of the lemma is simple by a direct derivation (see
Appendix E). Applying the lemma to the optimization of η in
(31) yields:

η∗ =

√
d ln(n)
nI2

max

, (33)

and
∆∗ = ∆

∣∣∣
η=η∗

= 2Imax

√
dn ln(n). (34)

Let us now verify the assumptions that have been made
along the way. In (27) it was assumed that ηImax ≤ 1. If
the contrary holds ηImax > 1 then considering the first term
in the RHS of (31), yields ∆ > nImax, and therefore the
theorem holds in a void way. To apply Lemma 2 it was require
that ηnImax ≥ d. If the opposite is true, i.e. ηnImax < d
then the second term the RHS of (31) becomes d

η ln(n) >
nImax ln(n), and so for n ≥ e, ∆ > nImax and the theorem
will hold in a void way. Thus for the two last conditions, it is
enough that n ≥ 3, since in this case if either of the conditions
does not hold, the theorem becomes true automatically (in a
void way). Lastly, in (31) it was assumed that ηeImax

d ≤ 1.

Substituting η∗ yields ηeImax
d = e ·

√
e2 ln(n)
dn ≤ e ·

√
ln(n)
n ,

which becomes smaller than 1 for n large enough. The last
condition supersedes n ≥ e, and is specified as a requirement
in the theorem. �

IV. ARBITRARY CHANNEL VARIATION

In this section, the main results of this paper are presented,
with respect to the problem defined in Section II-B: the
achievability of the capacity of the averaged channel, and
a converse showing that this is the best rate, under some
conditions. The communication system attaining this rate is
described, while leaving out some of the technical details, such
as decoding and channel estimation (these will be completed in
the next section). It is shown that under abstract assumptions,
the system achieves the desired rate.
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A. Target rate

The synthetic problem differs from the problem defined in
Section II-B, in two main aspects:

1) It assumes that the sequence of past channels is fully
known. Since the receiver observes only one output
sample from each channel, this assumption is not real-
istic. On the other hand, the time-averaged channel over
“large” chunks of symbols can be measured.

2) It assumes that a rate corresponding to a sum of the
per-symbol mutual information can be attained, whereas
with an arbitrarily varying channel, the amount of mu-
tual information between the input and output vectors is
potentially lower.

Therefore, as shall be seen, C2 is no longer achievable
in the context of the arbitrarily varying channel defined in
Section II-B. In Appendix H it is shown that, even imposing
on the synthetic problem only the limitation that the past
channels are not given, but need to be estimated, leads to the
conclusion that C2 is not attainable. The compromise is the
alternative target of obtaining C3 = C(W ), i.e. the capacity of
the averaged channel. This rate is optimal in a sense described
below, and is indeed asymptotically achievable.

The rate C(W ) is certainly not the maximum achievable
target rate. As an example, if C(W ) is achievable for large
n then by operating the same scheme on two halves of
the transmission time one could attain R = 1

2C
(
W

n/2
1

)
+

1
2C
(
W

n
n/2+1

)
, where W

n/2
1 ,W

n
n/2+1 denote the averaged

channels on the two halves. This rate is in general higher,
because due to the convexity of the mutual information
with respect to the channel C(W ) = maxQ I(Q,W ) ≤
maxQ

[
1
2I
(
Q,W

n/2
1

)
+ 1

2I
(
Q,W

n
n/2+1

)]
≤ R.

On the other hand, C(W ) is the maximum achievable rate
which is independent of the order of the sequence {Wi}, or, in
other words, which is fixed under permutation of the sequence.
This observation is formalized in the following theorem:

Theorem 2. Let R(Wn
1 ) (for n = 1, 2, ..) be a sequence

of rate functions, which are oblivious to the order of Wn
1 .

If the sequence is asymptotically attainable according to
Definition 1, then there exists a sequence δn −→

n→∞
0 such

that R(Wn
1 ) ≤ C(W ) + δn.

Note that C(W ) depends on n through the average over n
channels {Wi}n1 . Since both C1 and C2 are oblivious to the
order of Wn

1 , Theorem 2 implies they are not achievable.
Following is a rough outline of the proof. Consider the chan-

nel generated by uniformly drawing a random permutation
π of the indices i = 1, . . . , n, using the channels Wi in a
permuted order. If a system guarantees a rate R(Wn

1 ), which
is fixed under permutation, then this rate would be fixed for
all drawing of π, and therefore for the channel described, the
system can guarantee the rate R(Wn

1 ) a-priori. Hence, the
capacity of this channel must be at least R(Wn

1 ). The next
stage is to show that the feedback capacity of this channel
is at most C(W ). Due to the fact the channels are selected
from the set {Wi}ni=1 without replacement, the proof is a little

technical and will be deferred to Appendix F. However to give
an intuitive argument, replace the channel described above,
by a similar channel, obtained by randomly drawing at each
time instance one of {Wi}ni=1, this time with replacement.
This new channel is simply the DMC with channel law W .
Therefore feedback does not increase the capacity and its
feedback capacity is simply C(W ). The main point in the
proof is to show there is no difference in feedback-capacity
between the two channels, and the main tool is Hoeffding’s
bounds on sampling without replacement [17].

Another interesting property of the rate C(W ) is that it
meets or exceeds the random-code capacity of any memoryless
AVC defined over the same alphabet, and thus attaining C(W )
yields universality over all AVC’s (see Section VI-A). Through
the relation to AVC capacity one can see that common
randomness is essential to obtain C(W ), as it is essential for
obtaining the random-code capacity [1].

After settling for C(W ), the next question that naturally
arises is: what is the best convergence rate of the regret, with
respect to this target? In Section III-C it was shown, that even
in the context of the synthetic problem of Section III (with
full knowledge of past channels), the regret with respect to

C3 is at least O(n−
1
2 ), and this lower bound naturally holds

in the current problem, where only partial knowledge of past
channels is available.

The following theorem formalizes claim that C(W ) is
achievable according to Definition 1:

Theorem 3. For every ε, δ > 0 there exists N and a constant
c∆, such that for any n ≥ N there is an adaptive rate system
with feedback and common randomness, where for the problem
of Section II-B, over any sequence of channels {Wi(y|x)}ni=1:

1) The probability of error is at most ε
2) The rate satisfies R ≥ C(W )−∆C with probability at

least 1− δ

3) ∆C = c∆ ·
(

ln2(n)
n

) 1
4

where the probabilities are with respect to the channel and the
common randomness, and hold for any transmitted message.

Corollary 1. Specific values for ε, δ,∆C can be obtained as
follows. Let dε, δ0, cλ > 0 be parameters of choice. Then the
constants nmin and c∆ are given in the proof, by (114), (117),
where constants used in these equations are defined in (19),
(42), (54), (105)-(107), (109). For any n ≥ nmin, ε = n−dε

and δ = ε+ δ0.

Corollary 2. The same holds if Wi is determined (e.g. by
an adversary) as a function of the message and all previous
channel inputs and outputs Xi−1,Yi−1.

The proof of the theorem is given in Section V. A numerical
example is given after the proof (Example 2). To easily see
how the asymptotical promise of Theorem 3 can be achieved
(without the specific convergence rate), consider the following
crude scheme, which combines the results of Eswaran [3]
or our previous paper [4], i.e. the fact that the empirical
mutual information is achievable, with the prior prediction
scheme of Theorem 1. The transmission time n may be divided
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into multiple fixed-size blocks i = 1, . . . , N , and in each
block, one of these schemes is operated, with an i.i.d. prior
chosen by a predictor. Using Eswaran’s result, for example,
and ignoring some details such as finite-state assumptions,
one would obtain the rate I(Q̂i,W i) over each block, where
W i is the averaged channel over the block. The channel W i

can be well estimated (e.g. using training symbols or using
the communication scheme itself). Assuming it is known, if
the prediction scheme of Theorem 1 is operated over W i

it will guarantee the average rate over the N blocks will
be asymptotically at least 1

N

∑N
i=1 I(Q,W i) for any Q, and

using convexity, 1
N

∑N
i=1 I(Q,W i) ≥ I

(
Q, 1

N

∑N
i=1W i

)
=

I(Q,W ). Since this holds for any Q this achieves the capacity
of the average channel.

The scheme used for the proof of Theorem 3 combines the
rate-less scheme with the prior prediction in a cleaner way.
The communication and prediction scheme are described in
the remainder of this section.

B. The communication scheme

In this section give the communication scheme, up to some
details which will be completed later on (Section V-B). One of
the issues ignored in the synthetic problem is the determination
of the rate R before knowing the channel. To solve this
problem, rateless codes [18] are applied. The available time is
divided into multiple blocks as done by Eswaran et al [3] and
in [4].

Fix a number K of bits per block. In each block, K bits
from the message string are sent. At each block i = 1, 2, . . .,
a codebook of exp(K) codewords is generated randomly and
i.i.d. (in time and message index) according to the prior Q̂i(x).
Q̂i(x) is determined by a prediction scheme which is specified
below. The random drawing of the codewords is carried out by
using the common randomness, and the codebook is known to
both sides. The relevant codeword matching the message sub-
string is sent to the receiver symbol by symbol. At each symbol
of the block and for each codeword xl, l = 1, . . . , exp(K)
in the codebook, the receiver evaluates a decoding condition
(59) that will be specified later on. Roughly speaking, the
condition measures whether there is enough information from
the channel output to reliably decode the message.

The receiver decides to terminate the block if the condition
(59) holds, and informs the transmitter. When this happens,
the receiver determines the decoded codeword as one of the
codewords that satisfied (59). Then, using the known channel
output y, and the decoded input x over the block which was
decoded, the receiver computes an estimate of the averaged
channel over the block. The specific estimation scheme will
be specified in Section V-B.

The receiver calculates a new prior for the next block
according to the prediction scheme that will be specified
below. The receiver sends the new prior to the transmitter.
Alternatively, the receiver may send the estimated channel, and
the new prior can be calculated at each side separately. The
new block i + 1 starts at the next symbol, and the process
continues, until symbol n is reached. The last block may
terminate before decoding.

Q̂2Q̂1 = U Q̂3 Q̂4

x̂,y

W 3

Predictor Q̂4

W 2

x̂,y

W 1

x̂,y

Fig. 4. An illustration of the combination of a rateless scheme with
prior prediction. Each box represents a rateless block in which K bits are
transmitted.

C. The prediction algorithm
In this section the prediction algorithm is presented. Denote

by i the index of the block, and by W i the averaged channel
over the block, i.e. if the block i starts at symbol ki and
ends at ki+1− 1, then W i(y|x) , 1

ki+1−ki
∑ki+1−1
t=ki

Wt(y|x).
The length of the i-th block is denoted mi = ki+1 − ki. An
exponentially weighted predictor mixed with a uniform prior is
used. The motivation for using the uniform prior is explained
in the next section. Let U = 1

|X |1 be the uniform prior over
X . Define the predictor as:

Q̂i = (1− λ)
∫

∆X

wi(Q)QdQ+ λU. (35)

where

wi(Q) =
1

Φ
(∑i−1

j=1mj · Fj(Q̃)
) · eη∑i−1

j=1mj ·Fj(Q), (36)

where Fi(Q) is an estimate of the mutual information of the
averaged channel over block i, I(Q,W j), and is interpreted
as an estimate of the number of bits that would have been
sent with the alternative prior Q. This estimate is defined later
on in Section V-E. The parameters λ, η and K will be chosen
later on. Φ is the potential function defined in (22). The term

1
Φ(...) normalizes wi(Q) to

∫
∆X

wi(Q)dQ = 1.
The following Lemma formalizes the claim that the pre-

dictor resulting of (35)-(36), asymptotically achieves a rate
R ≥

∑B+1
i=1

mi
n Fi(Q):

Lemma 4. Let Fi(Q), i = 1, . . . , B+1 be a set of B+1 non-
negative concave functions of the prior Q ∈ ∆X , let {mi}B+1

i=1

denote a set of non-negative numbers, and K,n, Imax be
arbitrary positive constants satisfying n > e and K ≥ 2Imax.

Define the target rate

RT = max
Q∈∆X

B+1∑
i=1

mi

n
Fi(Q). (37)

Define the actual rate R over n channel uses as:

R =
KB

n
. (38)

Define the sequential predictor Q̂i as the result of (35) and
(36). Let {mi}B+1

i=1 satisfy:

miFi(Q̂i) ≤ K. (39)
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Then for the value of η specified below (43) it is guaranteed
that:

R ≥ min(RT , Imax)−∆pred, (40)

where

∆pred =
K

n
+ Imax · λ+ c1

√
ln(n)
n

λ−
1
2 , (41)

and
c1 = 2

√
K · |X |(|X | − 1) · Imax. (42)

The value of η attaining the result above is:

η =

√
|X | − 1

K · |X | · Imax
· ln(n) · λ

n
. (43)

The lemma is proven in Appendix B. The proof uses similar
techniques to those introduced in Section III-E, however,
different from the previous analysis, due to mixing with the
uniform prior, the “Blackwell” condition ((23) in the previous
case) only approximately holds. On the other hand, the use
of the uniform prior enables relating Fi(Q̂i) to Fi(Q) for any
other Q, and thus obtain from (39) an upper bound on the
gain miFi(Q) related to an alternative prior Q. The trade-off
between the two is expressed in the two last factors in (41),
one of which is increasing with λ and the other decreasing.

Since by (39), R ≥
∑B+1
i=1

mi
n Fi(Q̂i)−

K
n , the claim of the

lemma appears similar to Theorem 1, with miFi(Q) taking
the place of the function I(Q,Wi). However two important
properties of the lemma, distinguishing it from the rather
standard claim of Theorem 1 are that the bound does not
depend on the number of blocks (i.e. the number of prediction
steps), and that no upper bound on Fi(Q) is assumed.

The rate Imax represents a bound on mutual information,
but in the context of the lemma it enough to consider it as
an arbitrary rate that caps RT . It affects the setting of η and
the resulting loss. Also, n does not have to correspond to the
actual number of symbols and serves here merely as a scaling
parameter for the communication rate. The lemma sets a value
of η but not for λ, since λ will have additional roles in the
next section.

D. Motivation for the prediction algorithm

In this section a motivation for the prediction algorithm,
and especially for the use of the uniform prior is given. Under
abstract assumptions it is shown to achieve the capacity of
the averaged channel. This section is intended merely to give
motivation and is not formally necessary for the proof of
Theorem 3.

To simplify the discussion, let us make abstract assumptions
regarding the decoding condition and the channel estimation:

1) The decoding condition yields block lengths satisfying:

mi ≤
K

I(Q̂i,W i)
, (44)

with an equality for all blocks except the last one which
is not decoded. This implies the rate K

mi
equals the

mutual information of the averaged channel.

2) The averaged channels over all previous blocks are
known and available for the predictor

With these assumptions, the prediction problem can be consid-
ered separately from decoding and channel estimation issues.
Supposing that B blocks were transmitted, the achieved rate is
R = KB

n . Since n ≈
∑
imi, using (44) this can be written as

R ≈
(

1
B

∑B
i=1

1
I(Q̂i,W i)

)−1

. The target is to find a prediction

scheme for Q̂i, such that for any sequence Wi, one will have
R ≥ C(W )−δn with δn → 0. There are two main difficulties
compared to the prediction problem discussed in Section III:

1) The problem is not directly posed as a prediction prob-
lem with an additive loss.

2) The loss is not bounded: if for some i, I(Q̂i,W i) = 0
then the rate becomes zero regardless of other blocks.

The first issue is resolved by posing an alternative problem
which has an additive loss, and using the convexity of the
mutual information with respect to the channel (as will be
exemplified below in the abstract case). Regarding the second
issue, notice that if the channel has zero capacity (always,
or from some point in time onward), it is possible that one
of the blocks will extend forever and will never be decoded.
However one must avoid a situation where the channel has
non-zero capacity (which the competition enjoys), while a
badly chosen prior yields I(Q̂i,W i) = 0. This may happen for
example in the channels of Example 1, if the predictor selects
to use the pair of inputs that yield zero capacity. If this happens
then the scheme will get stuck since the block will never be
decoded, and hence there will be no chance to update the
prior. In addition, notice that selecting some inputs with zero
probability makes the predictor blind to the channel values
over these inputs. To resolve these difficulties the predictor is
constructed as a mixture between an exponentially weighted
predictor and a uniform prior. A result by Shulman and Feder
[19] bounds the loss from capacity by using the uniform prior
U :

I(U ;W )
[19,(3)]

≥ C · β(C)
[19,(17)]

≥ C

|X | · (1− e−1)
, (45)

where C is the channel capacity and β(C) is defined therein.
This guarantees that if the capacity is non-zero, then the
uniform prior will yield a non-zero rate, and hence the block
will not last indefinitely.

Under the abstract assumptions made here, the following Fi
is known and can be substituted in Lemma 4:

Fi(Q) = I(Q,W i). (46)

This yields the following result:

Lemma 5. For the scheme of Section IV-B under the abstrac-
tion specified above, with n ≥ 3 and K ≥ 2Imax and properly
chosen η, λ, the following holds: for any sequence of channels,
the rate satisfies:

R =
K ·B
n
≥ C(W )−∆pred, (47)

where C(W ) is the capacity of the averaged channel and

∆pred = 4 · I
2
3
max · |X |

2
3 ·K

1
3 ·
(

ln(n)
n

) 1
3
−→
n→∞

0, (48)
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where Imax = log min(|X |, |Y|). The parameters of the
scheme η, λ required to attain the result are specified in (43)
and (191) respectively.

Note that the bound (48) is increasing with K, so it appears
that that it can be improved by taking the minimal value of
K. However in the actual system, there are be fixed overheads
related to the communication scheme, and a large block size
would be needed to overcome them. Taking any fixed and large
enough K, the normalized regret is bounded by O

(
lnn
n

) 1
3 ,

which converges to zero, but at a worse rate than that of
Theorem 1.

Note that the claims of Lemma 5 are stronger than the
claims that appeared in the conference paper on the subject
[10], for the same problem, mainly in terms of the improved
convergence rate with n. Also, the scheme used here is slightly
different than the one in the conference paper (in Equa-
tion (36)). The proof corresponding to the scheme presented in
the conference paper can be found in an early version uploaded
to arXiv [20].

To prove Lemma 5, Lemma 4 is used with Fi defined
in (46). The rate guaranteed by Lemma 4 is approximately
RT ≥

∑B+1
i=1

mi
n I(Q,W i). Using convexity of the mu-

tual information with respect to the channel this is at least
I
(
Q,
∑B+1
i=1

mi
n W i

)
= I

(
Q,W

)
, and since this is true for

any Q, the rate is at least C
(
W
)
. The detailed proof appears

in Appendix G.
Notice that in the alternative scheme described after Theo-

rem 3, it appears that there is no need for the uniform prior,
however this is somewhat hidden in the assumption that the
channel is known. Furthermore in that scheme there is no need
to worry about rateless blocks extending “forever” since the
commnication scheme is re-started on each of the N blocks.

V. PROOF OF THE MAIN RESULT

In this section Theorem 3, regarding the attainability of
C(W ) is proven.

A. Preliminaries

Suppose that during a certain block of length m the scheme
applied the i.i.d. prior Q(x). In order to estimate the channel
after the block has ended and x was decoded, the following
estimate is used:

W̆ (y|x) =
P̂x,y(x, y)
Q(x)

, (49)

where here and throughout the current section, x,y denote
the m-length input and output vectors over the block, and
P̂x,y(x, y) is the empirical distribution of the pair (xi, yi) (for
i = 1, . . . ,m). The estimator is the joint empirical distribution
divided by the (known) marginal distribution of the input X .
Since a uniform prior is mixed into Q(x) (35), all Q(x)
are bounded away from zero, which makes the estimator
(49) statistically stable, in comparison with the more natural
estimator given by the empirical conditional distribution:

Ŵ (y|x) = P̂y|x(x, y) =
P̂x,y(x, y)
P̂x(x)

, (50)

in which the denominator may turn out to be zero. A drawback
of the proposed estimator (49) is, that it does not generally
yield a legitimate probability distribution, i.e.

∑
y W̆ (y|x) 6=

1. The result of using this estimator is that the calculations
below include values that formally appear like probabilities
but are not. To distinguish them from legitimate probabilities
these values are termed “false” probabilities, and are marked
with a �̆. These functions usually approximate or estimate
a legitimate probability. Formally, a false probability p̆(y)
or p̆(y|x) can be any non-negative function of y or x, y
(respectively). Note that until this point, the assumption that
the output alphabet Y is finite was not needed, since the
channel was given to the predictor rather than being estimated,
and it is the first time this assumption is used.

The function that used as an optimization target for selecting
the prior for the next block is, as before, the mutual informa-
tion. The reason is that since the aim is to achieve the capacity
of the averaged channels, the “competing” schemes, for each
prior Q, achieve the mutual information of the averaged
channel. Since the estimate of the channel is a false probability,
the mutual information function is extended to receive a false-
probability in its second argument, by simply plugging-in into
the standard formula of I(Q,W ). This substitution results in
what is defined as the false mutual information Ĭ(Q, W̆ ):

Ĭ(Q, W̆ ) ,
∑
x,y

Q(x)W̆ (y|x) log

(
W̆ (y|x)∑

x′ Q(x′)W̆ (y|x′)

)
,

(51)
where cases of Q(x) = 0 or W̆ (y|x) are resolved using the
convention 0 · log 0 = 0. The following lemma shows that
most of the properties of the mutual information function
I(P,W ) needed for the previous analysis in Section IV-C are
maintained.

Lemma 6 (Properties of false mutual information). The func-
tion Ĭ(Q, W̆ ) defined in (51) is

1) Non negative
2) Concave with respect to Q
3) Convex with respect to W̆
4) Upper bounded by σ · log |X |, where

σ = maxx
[∑

y W̆ (y|x)
]
.

The proof is technical and appears in Appendix C. In
addition to the properties above, the proof relies on the next
property which is more surprising. When the prior Q used
for estimating the channel in (49) is the same prior Q used
as input in (51), the false mutual information attains a form
which is familiar from [21] as a prototype of the zero order rate
function. As in [21], this form can be used to obtain a bound on
the probability of Ĭ(Q, W̆ ) to exceed a threshold for a random
drawing of x. This bound, in turn, allows constructing the rate-
adaptive system attaining a block length mi that depends on
Ĭ(Q, W̆ ).

Following [21], let us define conditional empirical prob-
ability of the discrete sequence x given the sequence y
as p̂(x|y) ,

∏m
i=1 P̂x|y(xi|yi), i.e. the probability of the

sequence x under the conditionally i.i.d. distribution P (y|x) =
P̂x|y(y|x). Also, when vectors are substituted into Q, then
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Q is implicitly extended in an i.i.d. fashion, i.e. Q(x) ,∏m
i=1Q(xi). The following lemma will be used to bound the

error probability:

Lemma 7 (False mutual information as a decoding metric).
The false MI with prior Q(x) and W̆ (y|x) = P̂x,y(x,y)

Q(x) where
x,y are m-length vectors can be written as:

Ĭ(Q, W̆ ) = Ĭ

(
Q(x),

P̂xy(x, y)
Q(x)

)
=

1
m

log
p̂(x|y)
Q(x)

. (52)

Furthermore, for any Q and any y, when X is distributed i.i.d.
X ∼ Qn,

Pr
(
Ĭ(Q, W̆ ) ≥ T |y

)
= Pr

(
p̂(X|y)
Q(X)

≥ exp(mT )
∣∣∣y)

≤ exp(−(mT − k0 logm− k1)),
(53)

where

k0 = k1 = (|X | − 1) · |Y|. (54)

Note that from the results in [21, Theorem 9?]3 (by using
the result of the Theorem and the definition of intrinsic
redundancy therein) a tighter upper bound can be obtained,
with k0 = |Y|·(|X |−1)

2 logm (k0 logm + k1 = rm where
rm is explicitly stated in [21, Theorem 9?]). For the sake of
simplicity, a looser result is presented here, as this does not
change the asymptotical results significantly.

Proof of Lemma 7: The first part is shown by direct
substitution. When W̆ = P̂xy(x,y)

Q(x) :

∑
x′

Q(x′)W̆ (y|x′) =
∑
x′

Q(x′)
P̂xy(x′, y)
Q(x′)

=
∑
x′

P̂xy(x′, y) = P̂y(y).
(55)

Therefore

Ĭ(Q, W̆ ) = Ĭ

(
Q(x),

P̂xy(x, y)
Q(x)

)
(51),(55)

=
∑
x,y

Q(x)
P̂xy(x, y)
Q(x)

log

(
P̂xy(x, y)
Q(x)P̂y(y)

)

=
∑
x,y

P̂xy(x, y) log

(
P̂x|y(x|y)
Q(x)

)

=
1
m

m∑
i=1

log

(
P̂x|y(xi|yi)
Q(xi)

)

=
1
m

log
p̂(x|y)
Q(x)

.

(56)

3Reference is to be updated in the final revision.

As for the second claim, by Markov bound :

Pr
(
p̂(X|y)
Q(X)

≥ exp(mT )
∣∣∣y)

≤ 1
exp(mT )

E
[
p̂(X|y)
Q(X)

∣∣∣y]
(a)
= exp(−mT )

∑
x∈Xm

p̂(x|y)
Q(x)

Q(x)

= exp(−mT )
∑

x∈Xm
p̂(x|y),

(57)

where (a) is because X is distributed Q independently of y.
To bound the sum above, let us split the set of sequences x
to sub-sets having the same conditional empirical probability
P̂x|y(x|y) (i.e. same conditional type [22][23, §11]). In a
subset having P̂x|y(x|y) = p(x|y), the empirical probability
p̂(x|y) =

∏
i p(xi|yi) equals the (legitimate) probability of

the sequence under the i.i.d. distribution p, and as a result∑
x:P̂x|y(x|y)=p(x|y) p̂(x|y) ≤ 1. The number of subsets is

upper bounded (similarly to bounds on the number types
[23, Theorem 11.1.1] ) by which is upper bounded by (m +
1)(|X |−1)·|Y|, since p(x|y) ∈

{
0, 1

m ,
2
m , . . . , 1

}
is completely

defined by (|X | − 1) · |Y| integers in {0, . . . ,m}.

∑
x∈Xm

p̂(x|y) =
∑
p

∑
x:P̂x|y(x|y)=p(x|y)

p̂(x|y)

≤ (m+ 1)(|X |−1)·|Y|.

(58)

Substituting in (57) and using m+ 1 ≤ 2m yields the desired
result.

B. Decoding condition and estimated channel for the scheme

When the communication scheme was described in Sec-
tion IV-B, the details of the decoding condition and chan-
nel estimation were omitted. These are specified below. At
each symbol of the block and for each codeword xl, l =
1, . . . , exp(K) in the codebook, the receiver evaluates the
following decoding condition:

log
p̂(xl|y)
Q̂i(xl)

> βK, (59)

where β is a parameter to be specified later on, and the vectors
xl and y are taken over the symbols of the block.

Equivalently, by Lemma 7, the decoding condition can be
written as:

m · Ĭ(Q̂i, W̆ ) > βK, (60)

where m is the number of the symbol in the block and W̆ (y|x)
is a channel estimate according to (49), where x is substituted
with the hypothesized input xl and y is known output vector
over the block.

After decoding, the receiver sets the estimated channel W̆i

as the false channel W̆ (y|x) measured according to (49),
where x,y are the m length vectors denoting the (hypothe-
sized) input and output vectors over the duration of the block.

To produce the next prior, this false channel is fed into the
prediction scheme of Lemma 4, with Fi(Q) = Ĭ(Q, W̆i) and
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where mi denotes the length of block i. The parameters β, η, λ
(the latter are required for the prediction scheme of Lemma 4)
will be determined in the course of the proof.

C. Proof outline

The following proof outline conveys the main ideas in the
proof, while some details were intentionally dropped out, for
simplicity.

1) Using the results of Lemma 7 it is shown that the
block lengths can satisfy the inequality (39) required
by Lemma 4, up to a small overhead term in K, while
still attaining a small probability of error.

2) Operating the prior prediction scheme of Lemma 4,
with Fi(Q) = Ĭ(Q, W̆i) as the metric with W̆i

the measured channels, guarantees that if no errors
were made, the rate achieved by the system ex-
ceeds maxQ

∑B+1
i=1

mi
n Ĭ(Q, W̆i) up to vanishing factors,

where B is the number of blocks that were sent.
3) Due to the convexity of the false mutual information

with respect to the channel, the rate above exceeds
maxQ Ĭ(Q, W̆A) where W̆A =

∑B+1
i=1

mi
n W̆i.

4) Since the rate above exceeds Ĭ(Q, W̆A) for any Q, it
exceeds C̆(W̆A) = maxQ Ĭ(Q, W̆A).

5) All is left is to show the convergence in probability of
W̆A to the true average channel W , and by using the
continuity of the capacity this proves the convergence
in probability of C̆(W̆A) to the capacity of the averaged
channel C(W ).

6) In order to attain explicit bounds on the convergence
rate, bounds relating the difference in capacity to the
difference in the channels are used, and the system
parameters are optimized.

Note that there are several delicate issues caused by the
relations between W̆i, mi and Q̂i. For example, the correct
operation of the prior predictor relies on the assumption
of correct decoding which is required to obtain the correct
channel estimators (i.e. that x used in (49) is the true channel
input). However, conditioning on the event of correct decoding
changes the distribution of the average estimated channel
W̆A. Another example is that, although the convergence of∑B+1
i=0

mi
n W̆i to W appears to be trivial at first sight, the proof

is complicated by the fact that the block lengths mi are random
variables, which themselves depend on the estimated channels
W̆i. One embodiment of this dependence is that the block
would never end with an estimated channel which has zero
capacity. Another dependence is between mi, W̆i of different
blocks, created through the prior prediction Q̂i.

The proof starts with a set of propositions formalizing the
claims made in the proof outline above. k to denotes the
symbol index and i denotes the block index. The block index
of a certain symbol is denoted i = bk (i.e. i = bk if symbol k
belongs to block i). The length of each block is denoted mi

(i = 1, . . . , B + 1, including the last block). The last block is
not accounted for in the rate, even if it is decoded.

D. Error probability

Proposition 1 (Error probability and decoding thresholds).
For the value of β given below (63), the probability of any
decoding error occurring in any of the blocks is at most ε.

Proof: Consider a specific block and denote by m the
number of the symbol inside the block. Since codewords other
than the one which is actually transmitted are independent of
x,y, the probability to decide in favor of a specific erroneous
codeword Xl, at any specific symbol k (i.e. that (59) will hold
with respect to it), is upper bounded using (53) by:

Perr(l, k) = Pr
(

log
p̂(Xl|y)
Q(Xl)

> βK
∣∣y)

= Pr
(
p̂(Xl|y)
Q(Xl)

> exp(mT )
∣∣y) ∣∣∣

T=βK/m

≤ exp(−(βK − k0 logm− k1)),

(61)

where k0, k1 are defined in Lemma 7. And by taking expected
value over Y, the same bound holds when not conditioning
on y. Since there are exp(K)− 1 competing codewords, and
n symbols, the probability to decide in favor of any erroneous
codeword at any symbol (i.e. to make any decoding error), is
upper bounded using the union bound, by:

Perr ≤ exp(K) · n · exp(−(βK − k0 log n− k1))
= exp(−((β − 1)K − (k0 + 1) log n− k1)),

(62)

where logm was replaced by log n ≥ logm. β is determined
so as to make the RHS equal ε, and thereby guarantee the
error probability is at most ε:

β = 1 +
log(ε−1) + (k0 + 1) log n+ k1

K
. (63)

A suitable choice of K would yield β −→
n→∞

1+. �

E. Attained rate

The following lemma relates the rate to the averaged esti-
mated channel W̆A:

Proposition 2 (Rate as a function of average estimated chan-
nel). If there are no decoding errors, the rate of the scheme
satisfies:

R =
KB

n
≥ (1− δ1) ·min

(
C̆
(
W̆A

)
, Imax

)
−∆pred, (64)

where C̆
(
W̆
)
, maxQ∈∆X Ĭ(Q, W̆ ) is the false capacity,

W̆A is the averaged estimated channel

W̆A(y|x) =
1
n

B+1∑
i=1

miW̆i(y|x), (65)

∆pred is defined in Lemma 4 (for the relevant parameters
n,K, λ), and

δ1 =
1
K

[
log(ε−1) + (k0 + 1) log n+ k1 + log

(
|X |
λ

)]
.

(66)

Proof: Denote by W̆ (l)
i (y|x) the channel estimate according

to (49), taken over the symbols of the i-th block, with respect



14

to the hypothesized input sequence xl. By definition of W̆i

(Section V-B), W̆i = W̆ (l)(y|x) when l is the index of the
correct codeword. Denote by W̆ ∗i the value of W̆ (l)

i (y|x) when
l is the index of the hypothesized codeword. When there are
no errors, W̆ ∗i = W̆i.

The prediction scheme of Lemma 4 is applied with Fi(Q) =
Ĭ(Q, W̆ ∗i ). By Lemma 6, this choice satisfies the conditions
of the lemma with respect to Fi(Q). Assuming there are no
errors, then Fi(Q) = Ĭ(Q, W̆i).

In the following, the decoding condition is used to show,
that the requirements of Lemma 4 with respect to the block
length (39) hold.

Denote by W̆
(B)
i and W̆

(E)
i , the channel estimates taken

with respect to the true x over the first mi−1 symbols of the
block i, and over the last symbol of the block, respectively. In
other words, if block i spans symbols [ki, li] where li−ki+1 =
mi then

W̆i(y|x) =

∑li
k=ki

Ind(Xk = x, Yk = y)

mi · Q̂i(x)
(67)

W̆
(B)
i (y|x) =

∑li−1
k=ki

Ind(Xk = x, Yk = y)

(mi − 1)Q̂i(x)
(68)

W̆
(E)
i (y|x) =

Ind(Xli = x, Yli = y)
Q̂i(x)

, (69)

where in the equations above the empirical distribution in (49)
is written explicitly as a normalized sum of indicator functions.
Let us assume mi > 1 and return to the case of mi = 1 at
the end. From the above:

W̆i(y|x) =
mi − 1
mi

W̆
(B)
i (y|x) +

1
mi

W̆
(E)
i (y|x). (70)

Since at symbol mi − 1 in the block, which is one symbol
before decoding, none of the codewords satisfies the decoding
condition (60), including the correct codeword (which corre-
sponds to the true channel input X):

(mi − 1) · Ĭ
(
Q̂i, W̆

(B)
i

)
≤ βK. (71)

The same holds for the last block i = B + 1. As for W̆ (E)
i ,

(35) yields:

Q̂i(x) ≥ λ

|X |
, (72)

and because W̆
(E)
i is measured on a single symbol, the

following bound holds:

Ĭ
(
Q̂i, W̆

(E)
i

)
= log

(
1

Q̂i(Xli)

)
≤ log

(
|X |
λ

)
. (73)

The equality above can be obtained using Lemma 7, or by
definition (51), using the fact that only for a single pair (x, y),
W̆

(E)
i (y|x) > 0. Combining (71) and (73) using (70):

mi · Ĭ
(
Q̂i, W̆i

)
= mi · Ĭ

(
Q̂i,

mi − 1
mi

W̆
(B)
i +

1
mi

W̆
(E)
i

)
≤ (mi − 1) · Ĭ

(
Q̂i, W̆

(B)
i

)
+ 1 · Ĭ

(
Q̂i, W̆

(E)
i

)
≤ βK + log

(
|X |
λ

)
, K̃.

(74)

In the case of mi = 1, W̆i = W̆
(E)
i and (74) holds due

to (73). The last inequality means the conditions of Lemma 4
with respect to mi are satisfied, with K replaced by K̃. Under
the conditions of the lemma, it guarantees that:

R̃ ,
K̃B

n
≥ min

(
max
Q

B+1∑
i=1

mi

n
· Ĭ(Q, W̆i), Imax

)
− ˜∆pred,

(75)
where ˜∆pred = ∆pred(K̃) is the offset defined in the lemma,
with K replaced by K̃. The convexity of Ĭ with respect to the
channel (Lemma 6) is now used to relate the sum above to
the capacity of the estimated averaged channel W̆A:

B+1∑
i=1

mi

n
· Ĭ(Q, W̆i) ≥ Ĭ

(
Q,

B+1∑
i=1

mi

n
· W̆i

)
= Ĭ

(
Q, W̆A

)
.

(76)
Substituting in (75) yields:

R̃ ≥ min
(

max
Q

Ĭ
(
Q, W̆A

)
, Imax

)
− ˜∆pred

= min
(
C̆
(
W̆A

)
, Imax

)
− ˜∆pred.

(77)

Because the actual rate that the scheme achieves is not R̃ but
R = K·B

n , the rate is at least:

R = R̃ · K
K̃
≥ K

K̃
·min

(
C̆
(
W̆A

)
, Imax

)
− K

K̃
˜∆pred. (78)

Considering the second term, notice that the expression for
∆pred(K) in Lemma 4, is sublinear in K, i.e. 1

K∆pred(K) is
decreasing with K, and therefore K

K̃
˜∆pred(K̃) ≤ K

K
˜∆pred(K),

and the offset term in (78) can be replaced by ∆pred(K).
As for the factor K

K̃
:

K̃

K
= β +

1
K

log
(
|X |
λ

)
= 1 +

1
K

[
log(ε−1) + (k0 + 1) log n+ k1 + log

(
|X |
λ

)]
︸ ︷︷ ︸

δ1

.

(79)

and using K
K̃

= 1
1+δ1

≥ 1− δ1 yields the desired result. �

F. Channel convergence

The following discusses the convergence of W̆A to W . As
mentioned above, mi and W̆i are statistically dependent. To
avoid conditioning on mi, W̆A can be written in an alternative
form. Plugging the explicit form of W̆i from (67) into the
definition of W̆A (65):

W̆A =
1
n

B+1∑
i=1

miW̆i(y|x)

=
1
n

B+1∑
i=1

mi

∑li
k=ki

Ind(Xk = x, Yk = y)

mi · Q̂i(x)

=
1
n

n∑
k=1

Ind(Xk = x, Yk = y)
Q̂bk(x)

.

(80)
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Recall that the averaged channel is

W =
1
n

n∑
k=1

Wk(y|x). (81)

To show that W̆A −W
Prob.−→
n→∞

0, define

γk(x, y) ,
1
n

[
Ind(Xk = x, Yk = y)

Q̂bk(x)
−Wk(y|x)

]
, (82)

then

W̆A −W =
n∑
k=1

γk(x, y). (83)

Although γk(x, y) are not i.i.d., they constitute a bounded mar-
tingale difference sequence, where the martingale is

∑k
j=1 γj .

First, by (72), each component γk(x, y) is bounded − 1
n ≤

γk(x, y) ≤ 1
n |X |λ

−1 , γmax, so they be bounded in absolute
value by γmax. On average over the common randomness,
each symbol Xk is generated Xk ∼ Q̂bk(x) independent of
the past (given Q̂bk(x)). In other words, for someone not
knowing the specific codebook, the knowledge of past values
of Xk−1

1 ,Yk−1
1 does not yield any information about Xk

when Q̂bk(x) is given. Define the state variable Sk−1 =(
Xk−1

1 ,Yk−1
1 , {Q̂bj}kj=1

)
. Note that Q̂bk is only generated

as a function of past symbols and therefore can be considered
as part of the state at time k. The conditional expectation of
γk is:

E
[
γk(x, y)

∣∣∣Sk−1

]
=

Pr(Xk = x, Yk = y|Sk−1)
n · Q̂bk(x)

− Wk(y|x)
n

=
Q̂bk(x) ·Wk(y|x)

n · Q̂bk(x)
− Wk(y|x)

n
= 0.

(84)

Now, since the previous value of the sum
∑k−1
j=1 γj is only a

function of Sk−1, by applying the iterated expectations law:

E

γk(x, y)

∣∣∣∣∣
k−1∑
j=1

γj


= E

E

γk(x, y)

∣∣∣∣∣Sk−1,

k−1∑
j=1

γj

 ∣∣∣∣∣
k−1∑
j=1

γj

 = 0,

(85)

which shows
∑k
j=1 γj is a martingale. Applying Hoeffding-

Azuma Inequality [13, A.1.3][24][17] yields:

Pr
{∣∣∣W̆A(y|x)−W (y|x)

∣∣∣ > t
}

= Pr

{∣∣∣∣∣
n∑
k=1

γk(x, y)

∣∣∣∣∣ > t

}

≤ 2e
− 2t2

nγ2max = 2e−
2nλ2t2

|X|2 .
(86)

The above holds for each value of (x, y) separately. To bound
the L∞ norm the union bound is used:

Pr
{
‖W̆A −W‖∞ > t

}
= Pr

{⋃
x,y

[∣∣∣W̆A(y|x)−W (y|x)
∣∣∣ > t

]}
≤
∑
x,y

Pr
{∣∣∣W̆A(y|x)−W (y|x)

∣∣∣ > t
}

(86)
≤ 2|X | · |Y| · e−

2nλ2t2

|X|2 .

(87)

To guarantee the above holds with probability at most δ0,
choose t to make the RHS equal δ0:

t = δW =
|X |
λ

√
1

2n
ln
(

2|X | · |Y|
δ0

)
. (88)

This is summarized in the following proposition:

Proposition 3 (Average estimated channel convergence). For
any δ0 > 0, and for δW defined above,

Pr
{
‖W̆A −W‖∞ > δW

}
≤ δ0. (89)

Observe that a large λ improves the channel estimate
convergence (reduces δW ), since it increases the minimum rate
at which each input symbol is sampled. This is an additional
role of λ which is not considered in Lemma 5.

G. Convergence of capacity
The final step is to link the difference in the channels ‖W̆A−

W‖ to the difference in capacities. The following lemma is
used:

Lemma 8 (Lp bound on difference of false mutual information
and capacity). Let Q(x) be an input distribution on the dis-
crete alphabet X , W (y|x), y ∈ Y a conditional distribution,
and W̆ (y|x) a false conditional distribution. Define

∆p = ‖W̆ (y|x)−W (y|x)‖p, (90)

where

‖f(x, y)‖p ,


(∑
x,y

|f(x, y)|p
)1/p

p <∞

max
x,y
|f(x, y)| p =∞

. (91)

Assuming ∆p ≤ 1
4 , then:

∀Q :
∣∣∣Ĭ(Q, W̆ )− I(Q,W )

∣∣∣ ≤ 2fp(∆p), (92)

and ∣∣∣C̆(W̆ )− C(W )
∣∣∣ ≤ 2fp(∆p), (93)

where
fp(t) = −t · |Y|1−1/p log

(
t

|Y|1/p

)
. (94)

For p = ∞, by convention 1/p = 0. Furthermore fp(t) is
concave and monotonically non-decreasing for t ≤ 1

4 .

Note that the lemma is also true with respect to legitimate
distributions. The proof of the lemma is based on Cover and
Thomas’ L1 bound on entropy [23], and Hölder’s inequality,
and appears in Appendix D.
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H. Main argument of the proof

The results above are combined as follows: Choose a value
of δ0. Denote by E the event of any decoding error occurring
in any of the blocks, and by D the event ‖W̆A−W‖∞ > δW .
Below, an over-line � denotes complementary events.

Consider the event D∩E. In this case, ‖W̆A−W‖∞ ≤ δW
and from Lemma 8 this implies |C̆(W̆A)−C(W )| ≤ δC where
δC = 2f∞(δW ) = −2δW · |Y| log(δW ). From Proposition 2:

R ≥ (1− δ1) ·min
(
C̆
(
W̆A

)
, Imax

)
−∆pred

≥ (1− δ1) ·min
(
C(W )− δC , Imax

)
−∆pred

≥ (1− δ1) ·
(
min

(
C(W ), Imax

)
− δC

)
−∆pred

= (1− δ1) ·
(
C(W )− δC

)
−∆pred

= C(W )− δ1 · C(W )− δC · (1− δ1)−∆pred

≥ C(W )− (δ1 · Imax + δC + ∆pred)︸ ︷︷ ︸
,∆C

.

(95)

To summarize, if D∩E then R ≥ C(W )−∆C . By the union
bound and Propositions 3,1:

Pr{R < C(W )−∆C} ≤ Pr{D ∪ E} ≤ Pr{D}+ Pr{E}
≤ δ0 + ε.

(96)

Note that although Lemma 8 is stated for general Lp norms,
it was used here only with respect to the L∞ norm, since
it is relatively simple to obtain bounds on the convergence
of W̆A − W by using the well known Hoeffding-Azuma
inequality per channel element (x, y) and the union bound.
However as the distribution of W̆A tends to a mutlivariate
Gaussian distribution, using L2 norm seems to be more suited.
Indeed, applying Lemma 8 with L2 norm, together with the
(yet unpublished) bound on the L2 convergence of vector
martingales due to Hayes [25] yields tighter bounds on the
probability of having a small difference C̆(W̆A)− C(W ) for
large alphabet sizes.

I. Choice of the parameters

Finally, the numerical expressions for the various overheads
are substituted, and the parameters of the scheme are chosen
to approximately optimize the convergence rate. δ0, ε are
parameters of choice, and together with λ,K they determine
∆C . The purpose is to choose λ,K that will approximately
minimize ∆C . This part is rather tedious. The relations leading
to ∆C are collected below:

∆C = δ1 · Imax + δC + ∆pred (97)

δ1 =
1
K

[
log(ε−1) + (k0 + 1) log n+ k1

+ log
(
|X |
λ

)]
(98)

δC = −2δW · |Y| log(δW ) (99)

δW =
|X |
λ

√
1

2n
ln
(

2|X | · |Y|
δ0

)
(100)

∆pred =
K

n
+ Imax · λ+ c1

√
ln(n)
n

λ−
1
2 . (101)

c1 = 2
√
K · |X |(|X | − 1) · Imax (102)

Since δW ≥
√

1
n , −2 log(δW ) ≤ log n, therefore δC ≤ δW ·

|Y| log(n). To make δW −→
n→∞

0 it is required that |X |λ ≤
√
n,

and making this assumption, the last element in δ1 is bounded
by log

(
|X |
λ

)
≤ 1

2 log n. Further assuming that k1 ≤ 1
4k0 log n

(this holds trivially for the values of k0, k1 of Lemma 7 when
n > 24), and ε ≥ 1

ndε
(for some arbitrary polynomial decay

rate dε) yields

δ1 ≤
1
K

[
dε log(n) + (k0 + 1) log n+ 1

4k0 log n+ 1
2 log n

]
=

log n
K

(dε + 5
4k0 + 3

2 ).

(103)

Using these bounds and extracting the constants ∆C is upper
bounded by:

∆C ≤ c2
lnn
K︸ ︷︷ ︸

(1)

+
c3
λ

ln(n)√
n︸ ︷︷ ︸

(2)

+ Imax · λ︸ ︷︷ ︸
(3)

+ c4

√
ln(n)
n
· K
λ︸ ︷︷ ︸

(4)

+
K

n︸︷︷︸
(5)

,

(104)
where element (1) stems from δ1, (2) from δC and (3)− (5)
from ∆pred, and the constants are:

c2 =
(
dε + 5

4k0 + 3
2

)
· Imax · log e (105)

c3 = |X | · |Y| · log(e) ·

√
1
2

ln
(

2|X | · |Y|
δ0

)
(106)

c4 =
c1√
K

= 2
√
|X |(|X | − 1) · Imax. (107)

As shall be seen, element (5) is negligible. Therefore let us
first optimize the sum of (1) and (4) with respect to K, using
Lemma 3. The sum can be written as aKα + bK−β with
α = 1

2 , β = 1, a = c4

√
ln(n)
n · 1

λ , b = c2 lnn. Since K is
required to be integer the Lemma 3 applies to real numbers t,
first write K as a function of a real valued t: K = btc, and
assume t ≥ 5. Then 1

K ≤
1
t−1 = 1

t
t
t−1 ≤

5
4

1
t , and therefore

aKα+bK−β ≤ atα+b
(

5
4

)β︸ ︷︷ ︸
b′

·t−β . Optimizing the bound with

respect to t using Lemma 3, yields

t∗ =
(
b′β

aα

) 1
α+β

=
(

5
2c2c

−1
4

) 2
3︸ ︷︷ ︸

c5

· (λ · n lnn)
1
3 , (108)

where
c5 ,

(
5
2c2c

−1
4

) 2
3 . (109)

aKα + bK−β
(32)
≤ 2

1
3 3

2 · a
2
3 · (b′)

1
3

= 3
2 ·
(

5
2c2c

2
4

) 1
3︸ ︷︷ ︸

c6

·
(

ln2(n)
n
· 1
λ

) 1
3

.
(110)
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Substituting in (104) (and upper bounding element (5) by
t∗/n) yields:

∆C ≤ c6 ·
(

ln2(n)
n
· 1
λ

) 1
3

︸ ︷︷ ︸
(1)+(4)

+
c3
λ

ln(n)√
n︸ ︷︷ ︸

(2)

+ Imax · λ︸ ︷︷ ︸
(3)

+ c5 ·
(
λ · lnn

n2

) 1
3

︸ ︷︷ ︸
(5)

,

(111)

To determine λ, notice that it is a trade-off between element
(3) which is increasing in λ and either (1) + (4) or (2) which
are decreasing. Minimizing any combination separately (i.e.
((1) + (4)) + (3) or (2) + (3)) using Lemma 3, yields the

same decay rate O

((
ln2(n)
n

) 1
4

)
, and λ of the form

λ = cλ ·
(

ln2(n)
n

) 1
4

. (112)

Therefore this determines the best decay rate possible for
(111). Note that one does not have to worry about the case
λ > 1, since in this case the term λImax in (104) will exceed
Imax and Theorem 3 will be true in a void way. Substituting
λ:

∆C ≤
c6

c
1
3
λ

·

( ln2(n)
n

)1− 1
4


1
3

︸ ︷︷ ︸
(1)+(4)

+
c3
cλ

(
ln2(n)
n

) 1
2−

1
4

︸ ︷︷ ︸
(2)

+ Imax · cλ ·
(

ln2(n)
n

) 1
4

︸ ︷︷ ︸
(3)

+ c5 ·
(
λ

lnn
n2

) 1
3

︸ ︷︷ ︸
(5)

≤

 c6
c

1
3
λ

+
c3
cλ

+ Imax · cλ

 · ( ln2(n)
n

) 1
4

+ c5 ·
(

lnn
n2

) 1
3

≤

 3
2 ·
(

5
2

c2c
2
4

cλ

) 1
3

+
c3
cλ

+ Imax · cλ + 1

 · ( ln2(n)
n

) 1
4

= c∆ ·
(

ln2(n)
n

) 1
4

,

(113)

where in the last inequality the expression for c6 was substi-

tuted and it was that assumed c5 ·
(

lnn
n2

) 1
3 ≤

(
ln2(n)
n

) 1
4 . In

the last step c∆ was defined as:

c∆ , 3
2 ·
(

5
2

c2c
2
4

cλ

) 1
3

+
c3
cλ

+ Imax · cλ + 1. (114)

Now, let us revisit the assumptions made along the way.

• In (113), it was assumed that c5 ·
(

lnn
n2

) 1
3 ≤

(
ln2(n)
n

) 1
4 .

This requires that (lnn)
1
6n

5
12 ≥ c5 =

(
5
2
c2
c4

) 2
3

, and a

sufficient condition is n ≥
(

5
2
c2
c4

) 8
5

.

• For (103), it was assumed that |X |λ ≤
√
n. Substituting λ

leads to n ln2(n) ≥ |X |
4

c4λ
, and a sufficient condition is

n ≥ |X |
4

c4λ
. (115)

• For (103), it was assumed that ε ≥ 1
ndε

. This holds by
simply determining dε and setting ε = 1

ndε
.

• For (103), it was assumed that k1 ≤ 1
4k0 log n, i.e. n ≥

exp(4k1/k0)
• The application of Lemma 4 to obtain Proposition 2

requires that n ≥ e and K̃ ≥ 2 · Imax. Since K̃ > K
it is sufficient that K ≥ 2Imax, or t∗ ≥ 2Imax + 1.
Furthermore for (110) it was assumed that t∗ ≥ 5, so
it is required that t∗ ≥ max(2Imax + 1, 5). Substituting
t∗ = c5 · (λ · n lnn)

1
3 = c5 · c

1
3
λ (n ln2 n)1/4 ≥ c5 · c

1
3
λn

1/4

leads to the sufficient condition:

n ≥
(

max(2Imax + 1, 5) · c−1
5 · c

− 1
3

λ

)4

. (116)

To summarize, the results holds for n ≥ nmin where nmin

is the maximum of the conditions of (115),(116), (103)
and of n ≥ e:

nmin = max
[
e,
|X |4

c4λ
,
(

max(2Imax + 1, 5) · c−1
5 · c

− 1
3

λ

)4

,

exp(4k1/k0)
]
.

(117)

This proves Corollary (1). �
The claims of the Theorem are milder and are easily

deduced from this Corollary. Given ε, δ, let δ0 = 1
2δ, and

choose any dε > 0 and cλ > 0. Choose N large enough
so that the error probability given by the Corollary satisfies
ε(N) = N−dε < min(ε, 1

2δ), and N ≥ nmin. This guarantees
that for n ≥ N , the requirements of the Corollary are met the
error probability is ε(n) ≤ ε, and the probability to fall short
of the rate is at most ε(n) + δ0 ≤ δ. This concludes the proof
of Theorem 3. �

Following is a numerical example for the calculation of c∆
and nmin in Theorem 3.

Example 2. The parameters |X | = 4, |Y| = 6, dε = 1 and
δ0 = 10−10 result in Imax = 2 and c2 = 72.1, c3 = 127, c4 =
9.8, c5 = 6.97. Choosing cγ = 10 yields c∆ = 51.7 and
nmin = min(e, 0.0256, 0.0123, 16) = 16. The convergence
rate is rather slow and ∆C ≤ 0.2 only for n > 3.98 · 1012.

J. Proof of Corollary 2

During the proof of Theorem 3 it was assumed that the
channel sequence is unknown but fixed. It is easy to see
that the same proof holds even if the channel sequence is
determined by an online adversary.
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The error probability (Proposition 1) is maintained regard-
less of channel behavior, because the probabilistic assumptions
made (61) refer to the distribution of codewords that were
not transmitted. Proposition 2 does not make any assumptions
on the channel as it connects the communication rate with
the measured channel. The main difference is with respect to
channel convergence. For the proof of Proposition 3 to hold
it needs to be shown that γk remains a bounded martingale
difference sequence, which boils down to verifying (120) still
holds, i.e. that γk has zero mean conditioned on the past.
Adding the message to the state variable Sk−1 defined before
(120), i.e. redefining Sk−1 =

(
Xk−1

1 ,Yk−1
1 , {Q̂bj}kj=1,b

∞
1

)
,

where b∞1 is the message bit sequence, it can be seen that
(120) holds even when the channel Wk(y|x) is a function of
Sk−1. �

K. A result for channels with memory of the input

Although channels with memory of the input are not consid-
ered in the current setting, the scheme presented above can be
used over such channels as well. In this case, the performance
of the scheme can be characterized as follows:

Lemma 9. When the scheme of Theorem 3 is operated over a
general channel Pr(Yn

1 |Xn
1 ), the results of the theorem hold

if the averaged channel is redefined as follows:

W =
1
n

n∑
k=1

Pr(Yk = y|Xk = x,Xk−1,Yk−1) (118)

Note that for each pair x, y, Pr(Yk = y|Xk =
x,Xk−1,Yk−1) is a random variable depending on the history
Xk−1,Yk−1, and therefore, different from the main setting
considered in this paper, W is also a random variable. The
definition above (118) coincides with the previous definition
of W (7) when the channel is memoryless with respect to
the history Xk−1,Yk−1. This lemma is used in [32] to show
competitive universality for channels with memory of the
input.

Proof: As in the proof of Corollary 2 it is easy to see
that assumptions on the channel apply only to Proposition 3
showing the convergence of the average estimated channel W̆A

to W . To show Proposition 3 holds, it needs to be shown that
γk remains a bounded martingale difference sequence, where
now γk is defined as:

γk(x, y) ,
1
n

[ Ind(Xk = x, Yk = y)
Q̂bk(x)

− Pr(Yk = y|Xk = x,Xk−1,Yk−1)
]
.

(119)

As in (83), the relation W̆A − W =
∑n
k=1 γk(x, y) holds.

Equation (120) now becomes

E
[
γk

∣∣∣Sk−1

]
=

Pr(Xk = x, Yk = y|Sk−1)
n · Q̂bk(x)

− 1
n

Pr(Yk = y|Xk = x,Xk−1,Yk−1)

=
Q̂bk(x) · Pr(Yk = y|Xk = x,Xk−1,Yk−1)

n · Q̂bk(x)

− 1
n

Pr(Yk = y|Xk = x,Xk−1,Yk−1)

= 0.
(120)

The rest of the proof of Proposition 3 remains the same. �

VI. DISCUSSION AND COMMENTS

In this section, some comments are made on the schemes
presented here, and the relation of the current results to
existing results is discussed.

A. A comparison with AVC capacity

It is interesting to compare the target rate C(W ) with the
AVC capacity. Let us start with a short background on the
AVC and the relation to the current problem.

In the traditional AVC setting [1], the channel model is sim-
ilar to the setting assumed here, but slightly more constrained.
The channel in each time instance is assumed to be chosen
arbitrarily out of a set of channels, each of which is determined
by a state. Frequently, constrains on the state sequence (such
as maximum power, number of errors) are defined. The AVC
capacity is the maximum rate that can be transmitted reliably,
for every sequence of states that obeys the constraints.

The AVC capacity may be different depending on whether
the maximum or the average error probability over messages is
required to tend to zero with block length, on the existence of
feedback, and on whether common randomness is allowed, i.e.
whether the transmitter and the receiver have access to a shared
random variable. The last factor has a crucial effect on the
achievable rate as well as on the complexity of the underlying
mathematical problem: the characterization of AVC capacity
with randomized codes is relatively simple and independent on
whether maximum or average error probability is considered,
while the characterization of AVC capacity for deterministic
codes is, in general, still an open problem. Randomization
has a crucial role, since the worst-case sequence of channels
is considered. This sequence of channels is chosen after the
deterministic code was selected (and therefore sometimes
viewed as an adversary), enabling the worst-case sequence
of channels to exploit vulnerabilities that exist in the specific
code. As an example, for every symmetrizable AVC [27,
Definition 2], the AVC capacity for deterministic codes is
zero [27, Theorem 1]. When randomization does exist, the
random seed is selected “after” the channel sequence was
selected (mathematically, the probability over random seeds
is taken after the maximum error probability over all possible
sequences), and therefore prevents tuning the channel to the
worst-case code. When randomization exists, the channel
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inputs may be made to appear independent from the point
of view of the adversary, thus limiting effective adversary
strategies. Therefore the results in the current paper assume
common randomness exists.

Let us compare the target rate C(W ) with the randomized
AVC capacity. The discrete memoryless AVC capacity without
constraints may be characterized as follows: let W be the
set of possible channels that are realized by different channel
states (for example in a binary modulo-additive channel with
an unknown noise sequence, there are two channels in the set
– one in which y = x and another in which y = 1− x). This
set is traditionally assumed to be finite, i.e. there is a finite
number of “states”, however this constraint is immaterial for
the comparison. The randomized code capacity of the AVC is
[1, Theorem 2]:

CAVC = max
Q

min
W∈conv(W)

I(Q,W )

= min
W∈conv(W)

max
Q

I(Q,W ) = min
W∈conv(W)

C(W ),

(121)

where conv(W) is the convex hull of W , which represents all
channels which are realizable by a random drawing of chan-
nels from W .4 In the example, conv(W) would be the set of
all binary symmetric channels. When input or state constraints
exist, they affect (121) simply by including in the set of Q-s
and in conv(W) only those priors, or channels, that satisfy the
constraints (respectively). The converse of (121) is obtained by
choosing the worst-case channel W ∗ = argmin

W∈conv(W)

C(W ) and

implementing a discrete memoryless channel (DMC) where
the channel law is W ∗, by a random selection of channels from
W . Hence it is clear that the randomized code capacity cannot
be improved by feedback. In contrast, the deterministic code
AVC capacity can be improved by feedback, and in some cases
made to equal to the randomized code capacity [28][29][30].
Therefore, most existing works on feedback in AVC deal with
the deterministic case.

Since by definition W ∈ conv(W), by (121), C(W ) ≥
CAVC, i.e. the target rate meets or exceeds the AVC capacity.
While in the traditional setting, a-priori knowledge of W or
state constraints on the channel is necessary in order to obtain a
positive rate, here a rate possibly higher than the AVC capacity
is attained, without prior knowledge of W . This is important
since without such constraints, i.e. when the channel sequence
is completely arbitrary, the AVC capacity is zero. This property
makes the system presented here universal, with respect to the
AVC parameters, a universality which also holds in an online-
adversary setting (Corollary 2).

The difference between CAVC (121) and C(W ) can be
regarded as the difference between the capacities of the worst
realizable channel W ∗ ∈ conv(W), and the specific channel
W ∈ conv(W) representing the average of the sequence of
channels that actually occurred. This difference is obtained
by adapting the communication rate to the capacity of the
average channel, and adapting the input prior to the prior that
achieves this capacity, whereas in the AVC setting, the rate

4The convex hull replaces the distribution ζ(s) over channel states in [1].

and the prior are determined a-priori, based on the worst-case
realizable channel.

As noted above, feedback cannot improve the randomized
AVC capacity. Therefore the improvement is attained not
merely by the use of feedback, but by allowing the commu-
nication rate to vary, whereas in the traditional AVC setting,
one looks for a fixed rate of communication which can be
guaranteed a-priori (note that the improvement is not in the
worst case). In allowing the rate to vary, the formal notion of
capacity (as the supremum of achievable rates) is lost, thereby
making the question of setting the target rate more ambiguous,
but nevertheless the achieved rates are improved.

B. Relation to empirical capacity and mutual information

The capacity of the averaged channel C(W ) is a slight
generalization of the notion of empirical capacity defined by
Eswaran et al [3, §D]. The only difference is releasing the
assumption made there, that the set of channel states is finite.
The empirical capacity of [3] is in itself a generalization of
the empirical capacity for modulo additive channels defined by
Shayevitz and Feder [2]. Eswaran et al [3] assume the prior Q
is given a-priori and attain the empirical mutual information
I(Q,W ). The scheme used here is similar to the scheme
they presented in its high level structure. The current result
(Theorem 3) can be regarded as an improvement over the
previous work, i.e. attaining the capacity C(W ) ≥ I(Q,W ),
rather than the mutual information, by the addition of the
universal predictor. This answers the question raised there [3,
§D], whether the empirical capacity is attainable.

Another small extension is in Corollary 2, showing that the
result holds in an adversarial setting. This extension is outside
the main focus of communicating over unknown channels,
and is only used to strengthen the claim on universality with
respect to the AVC parameters.

C. Competitive universality

In a related paper [5], the concept of the iterated finite block
capacity CIFB of an infinite vector channel was presented. This
concept is similar in spirit to the finite state compressibility
defined by Lempel and Ziv [31]. Roughly speaking, it is the
maximum rate that can be reliably attained by any block
encoder and decoder, constrained to apply the same encoding
and decoding rules over sub-blocks of finite length. The
positive result is that CIFB is universally attainable for all
modulo-additive channels (i.e. over all noise sequences). The
result is obtained by a system similar to the one described
in Section IV-B, while the input prior is fixed to the uniform
prior. The result uses two key properties of the modulo additive
channel:

1) The channel is memoryless with respect to the input xi
(i.e. current behavior is not affected by previous values
of the input).

2) The capacity achieving prior is fixed for any noise
sequence.

The current work is a step toward removing the second
assumption. The capacity of the averaged channel is a bound



20

on the rate that can be obtained reliably by a transmitter and
a receiver operating on a single symbol, since the channel
that this system “sees” can be modeled as a random uniform
selection of a channel out of {Wi}ni=1, which is termed the
“collapsed channel” [5]. By combining k symbols into a single
super-symbol, the result can be extended to obtain a rate which
is equal to or better from the rate obtained by block encoder
and decoder operating over chunks of k symbols. Therefore
the current result suggests that it is possible to attain CIFB

for all vector channels that are memoryless in the input, i.e.
that have the form defined in (3), for an arbitrary sequence of
channels Wi (compared to only an arbitrary noise sequence,
in the previous result). A stronger result, which applies also to
channel with memory, is shown in [32], based on the current
scheme, and Lemma 9.

D. Notes on the converse

It is interesting to consider the converse (Theorem 2)
from the following point of view: Suppose a competitor is
given the entire sequence of channels Wn

1 , but is allowed
to take from this sequence only the “histogram” (a list of
channels and how many times they occurred), and devise a
communication system based on this information. The rate
that can be guaranteed in this case is limited by C(W ). On
the other hand, assuming common randomness exists, it is
enough to know W in order to attain C(W ) without feedback.
To see this intuitively, apply a random interleaver and use
the fact the interleaved channel is similar to a DMC with
the channel law W . Therefore even if one knows the entire
histogram of the sequence, the average channel W , which
contains less information, contains all information necessary
for communication.

To illustrate this, consider the deterministic setting, where
instead of a sequence of channel laws Wi(y|x) there is a
sequence of deterministic functions fi : X → Y . This is
a particular case of the current problem, with Wi(y|x) =
Ind(y = fi(x)). Even in this case, according to Theorem 2,
a competitor knowing the list of functions up to order, will
not be able to guarantee a rate better than C(W ), where
W = 1

n

∑n
i=1 Ind(y = fi(x)), i.e. a channel created by

counting for each x, the normalized number of times a certain
y would appear as output.

Comparing the amount of information in the channel his-
togram and the averaged channel in this case, there are |Y||X |
functions, and therefore the distribution is given by |Y||X |−1
real numbers. On the other hand, the average channel is a
probability distribution from |X | to |Y| and is specified by
(|Y| − 1) · |X | real numbers.

An interesting property revealed through the example, is
that although the setting is deterministic, the result is given in
terms of probability functions. These “probabilities” are only
averages related to the deterministic function sequence, but this
shows that the formulation via probabilities (or frequencies) is
more natural than by specifying the function fi between the
input and output.

E. The required feedback rate

The feedback channel was so far assumed to be of unlimited
rate and free of delays and errors. This was done mainly to
focus the discussion and simplify the results. It is clear from
the scheme presented, that because the amount of information
required to be fed back to the transmitter can be made small,
the capacity of the average channel could be attained even if
the feedback link has any small positive rate and a fixed delay.
If the feedback channel is such that errors can be mitigated by
coding with finite delay, then errors can be accommodated as
well. Specifically, as shown in Appendix J, when the feedback
rate is limited, or there is a fixed delay, the penalty is a gap
of at most O(log n) symbols between the blocks, and that
the normalized loss from this effect tends to zero. Therefore
∆C −→

n→∞
0 (with the notation of Theorem 3), with any positive

feedback rate and any fixed delay.

F. Convergence rate

Throughout the course of this paper, as the assumptions
have been made more realistic, a deterioration of the rate
of convergence of the achieved rate to the target rate is
seen. Denote by δn the gap between the guaranteed rate
and the target rate, and focus on the dominant polynomial
power p = − limn→∞

ln δn
n , while ignoring the lnn terms. In

the synthetic problem of Section III (assuming “block-wise”
variation) §III p = 1

2 , when using the rateless scheme under
assumptions of perfect average channel knowledge §IV-D,
p = 1

3 , and when releasing the abstract assumptions §V, p = 1
4

. The first deterioration (between 1
2 and 1

3 ) is mainly attributed
to the rateless coding scheme. More specifically, it stems from
mixing with the uniform prior, which is necessary to bound
the regret per block when the blocks have variable lengths.
The second deterioration (between 1

3 and 1
4 ) can be attributed

mainly to the fact that the number of bits per block K has
to increase in a certain rate in order to balance overheads
created by the universal decoding procedure (and reduces the
rate of adaptation). While the rate of convergence which was
achieved deteriorates, the only upper bound presented on the
convergence rate is p ≤ 1

2 (§III-C), which is tight only for the
first case. We do not know whether better convergence rates
can be attained in Theorems 5,3.

G. Comments on the prediction scheme

The results in this paper were obtained by exponential
weighting. This scheme was selected mainly due to its sim-
plicity and elegance. Unfortunately, the exponential weighting
is performed over a continuous domain (of probabilities), and
therefore it is not immediately implementable. Of course, the
simplest practical solution could be discrete sampling of the
unit simplex and replacement of the integrals by sums. Since
the mutual information is continuous, it is possible to bound
the error resulting from this discretization. An alternative
way is to quantize the set of priors. Instead of competing
against a continuum of reference schemes, the number of
reference schemes may be reduced to a finite one, by creating
a “codebook” of priors {Qm}. This codebook is designed



21

Synthetic problem
(“Block-wise
variation”)

Arbitrarily varying channel,
with side information on aver-
age channel and without com-
munication overheads

Arbitrarily varying
channel

Notes

Reference §III, Theorem 1 §IV-D, Lemma 5 §II-B,§V, Theorem 3
C1 Attainability No No No C1 = Capacity of {Wi}n1 = Mean capacity

1
n

∑
i C(Wi)

C2 Attainability Yes No No C2 = Mean mutual information with fixed
prior maxQ

1
n

∑
i I(Q,Wi)

C3 Attainability Yes Yes Yes C3 = Capacity of the time-averaged channel
C(W ) = C

(
1
n

∑
iWi

)
1) Best attainable rate not using time

structure (Theorem 2).
2) C3 ≥ CAVC (Section VI-A)

Normalized
regret lower
bound

O
(

1
n

) 1
2 O

(
1
n

) 1
2 O

(
1
n

) 1
2

Normalized
regret attained

O
(

lnn
n

) 1
2 O

(
lnn
n

) 1
3 O

(
ln2 n
n

) 1
4

TABLE I
SUMMARY OF THE RESULTS

so that the penalty in the mutual information resulting from
rounding to the nearest codeword, is small. This quantization
is useful in terms of the feedback link, which now only has
to convey the index m. Having quantized the priors, one may
replace the predictors shown here by standard schemes used
for competition against a finite set of references [13, §2],[15].
See a rough analysis of this approach in Appendix I. An
alternative approach is to bypass the explicit calculation of
the predictor Q̂i and use a rejection-sampling based algorithm
to generate a random variable X ∼ Q̂i. This approach is
demonstrated in Appendix K.

Zinkevich [33] proposed a computationally efficient online
algorithm, based on gradient descent, to solve a problem of
minimizing the sum of convex functions, each revealed to
the forecaster after the decision was made (a similar setting
to that of Lemma 4). To apply Zinkevich’s results to the
current problem, some modifications are required. The mutual
information does not have a bounded gradient (which is
required by [33]), but this could be bypassed by keeping away
from the boundary of ∆X , i.e. from these points for which one
of the elements of Q is 0 or 1. One way to accomplish this
is by mixing with the uniform prior when defining the target
rate, and use maxQ

∑
i I((1 − λ)Q + λU,Wi) as a target,

and then bounding the loss induced by this mixture. In the
rateless scheme, a bound on the maximum value of miFi(Q)
(of Lemma 4) is required and can be obtained using the same
methods presented here.

Another application of sequential algorithms to solve prob-
lems related to AVC’s was proposed by Buchbinder et al [34]
who used a sequential algorithm to solve a problem of dynamic
transmit power allocation, where the current channel state is
known but future states are arbitrary.

H. The combination of the communication scheme with the
predictor

In the communication scheme proposed in Section IV-B an
i.i.d. prior is selected during each block, and is updated only at

the end of the block. This choice is motivated by the following
considerations:
• Assuming no explicit training symbols are transmitted,

the estimation of the channel W is done based on the
encoded sequence, which is known to the receiver only
after decoding (at the end of the block).

• Varying the prior throughout the block inserts memory
into the channel input, which complicates the analysis.

The result of this is a relatively slow update of the prior,
essentially limited by the block size, which is determined
based on communication related considerations (overheads
and error probabilities). An alterative would be learning the
channel through random training symbols (see for example
[2]), and updating the prior from time to time, without relation
to the rateless blocks.

I. The behavior of the regret for binary channels

In Section III-C a lower bound on the redundancy in
attaining C2 was shown by a counter example with |X | =
4, |Y| = 2. It is worth mentioning that for the set of binary
channels |X | = |Y| = 2, the normalized regret is not
necessarily O

(√
1
n

)
. For this set of channels, the optimal

prior does not reach the boundaries of [0, 1]: the two input
probabilities Pr(X = x) are always in [e−1, 1−e−1] [19]. It is
possible to show that the loss function l(Q,W ) = 1− I(Q,W )

Imax
satisfies conditions 1,2,4 in Cesa-Bianchi and Lugosi’s book
[13] Theorem 3.1 (but not condition 3). This fact together with
experimental results showing convergence of the FL predictor,
suggests that the normalized minimax regret in this case may
converge like O

(
logn
n

)
.

J. The uniform component in prior predictor

In the prediction scheme of Theorems 5,3, a uniform prior
is mixed with an exponentially weighted predictor (35). This
mixing has two advantages:
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1) Enabling to bound the instantaneous regret caused by a
large block due to a low mutual information

2) Enabling channel estimation by making sure all input
symbols have a non zero probability.

Note that alternative solutions are use of training symbols
at random locations and termination and re-transmission of
blocks whose length exceeds a threshold.

Mixing the exponentially weighted predictor with a uniform
distribution is a technique used in prediction problems with
partial monitoring, where the predictor only has access to
its own loss (or a function of it) and not to the loss of
the competitors [13, §6], and effectively assigns some time
instances for sampling the range of strategies. In the scheme
presented here, the uniform prior plays two roles. One is
related to the rateless communication scheme, which required
to relate the gains of the predictor to the gain of any alternative
prior Q (134) in order to have an upper bound on the latter
(135). The second role is in the convergence of the estimated
channel (Proposition 3). The second role is similar to the role
of uniform distribution in partial monitoring problems: the
channel W (y|x) cannot be estimated for input values x that
occur with zero probability.

Note that even without the explicit uniform component
λU , the exponential weighting element

∫
wi(Q)QdQ in (35)

includes a small uniform component. Particularly, since refer-
ring to (36), 1 ≤ eη

∑i−1
j=1mj ·I(Q,W j) ≤ eηnImax , wi(Q) ≥

1
vol(∆X )e

−ηnImax and∫
∆X

wi(Q)QdQ ≥ e−ηnImax
1

vol(∆X )

∫
∆X

QdQ︸ ︷︷ ︸
U

= e−ηnImax · U.

(122)

However this value is too small for both purposes.

K. Continuous channels

In the current paper it is assumed the input and output
alphabets are finite. In general it is not possible to universally
attain C2 or C3, even in the context of the synthetic problem of
Section III, when the alphabet size X is infinite. This is since
in the continuous case one is trying to assign a probability
Q to an infinite set of values, where the values producing
the capacity may be a small subgroup. Consider the following
example:

Example 3. Let the channel Wa, with input x and output
y (x, y ∈ R) be defined by the arbitrary sequence {ak}∞1 ,
ak ∈ R, with all ai 6= ak(i 6= k). The channel rule is defined
by:

y =
{
k x = ak
0 o.w.

. (123)

For any sequential predictor (even randomized) there is a
sequence of channels {Wa} such that the values of the
sequence {ai} at each step have total probability zero (since
the input distribution may have at most a countable group of
discrete values with non zero probability). Therefore there is
always a sequence of channels where the rate obtained by the
predictor is zero. On the other hand, each channel Wa has

infinite capacity (since it can transmit noiselessly any integer
number). Therefore the value of C2 is infinite (it is enough
to choose a prior suitable for one of the channels in the sum
(5)).

It stands to reason that under suitable continuity conditions
on W (y|x) and input constraints on Q(x), the problem may
be converted to a discrete one, while bounding the loss in this
conversion, by discretization of the input – i.e. by selecting
the input from a finite grid, or alternatively assuming a
parametrization of the channel.

VII. CONCLUSION

The problem of adapting an input prior for communica-
tion over an unknown and arbitrarily varying channel, using
feedback from the receiver, was considered. The channel is
comprised of an arbitrary sequence of memoryless channels.
It was shown possible to asymptotically approach the capacity
of the time-averaged channel universally for every sequence
of channels. This rate equals or exceeds the randomized AVC
capacity of any memoryless channel with the same inputs, and
thus the system is universal with respect to the AVC model.
The result holds also when the channel sequence is determined
adversatively. Negative results showing which communication
rates or minimax regret convergence rates cannot be attained
universally (see a summary in Table I) were presented. A
simplified synthetic problem relating to prediction of the
communication prior, which may have applications for block-
fading channels was considered as well.

When examining the role of feedback in combating un-
known channel, previous works mainly focused on the gains
of rate adaptation, while here an additional aspect in which
feedback improves the communication rate is seen, namely,
selection of the communication prior. The results have im-
plications on competitive universality in communication, and
suggest that with feedback, it would be possible for any
memoryless AVC, to universally achieve a rate comparable to
that of any finite block system, without knowing the channel
sequence.

When comparing the results to the traditional AVC results,
the former setting was prevailed by the notion of capacity,
and thus, even when feedback was assumed, it was not used
for adapting the communication rate. Here, for the first time, it
was shown that rates equal to or better from the AVC capacity
can be attained universally, when releasing the constraint of
an a-priori guaranteed rate. This demonstrates the validity of
the alternative “opportunistic” problem setting that has been
considered in the last decade, for feedback communication
over unknown channels, a setting which does not focus on
capacity.
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APPENDIX

A. Proof of Lemma 2

Lemma 2 relates the exponential weighting of a bounded
and concave real function a ≤ F (x) ≤ b over a convex vector
region x ∈ S ⊂ Rd to its maximum.

Proof: Let x∗ denote a global maximum of F (x) in S
(which exists since F is concave and S is closed). Then from
the concavity of F for any λ ∈ [0, 1]:

F (λx+(1−λ)x∗) ≥ λF (x)+(1−λ)F (x∗) ≥ λa+(1−λ)F (x∗).
(124)

Note that the RHS is a constant. Denote Sλ , {λx + (1 −
λ)x∗ : x ∈ S} = λS+(1−λ)x∗. Then due to convexity Sλ ⊂
S and due to the shrinkage vol(Sλ) = λdvol(S). Furthermore
by (124), ∀x ∈ Sλ : F (x) ≥ λa+ (1− λ)F (x∗). Write:∫

S

eηF (x)dx ≥
∫
Sλ

eηF (x)dx =
∫
Sλ

eη(λa+(1−λ)F (x∗))dx

= eη(λa+(1−λ)F (x∗))vol(Sλ)

= eηF (x∗) · e−ηλ(F (x∗)−a)λdvol(S)

≥ eηF (x∗) · e−ηλ(b−a)λdvol(S).
(125)

Therefore,

F ,
1
η

ln
[

1
vol(S)

∫
S

eηF (x)dx
]
≥ F (x∗)−λ(b−a)+

d lnλ
η

.

(126)
Maximizing the RHS with respect to λ yields:

λ =
d

η(b− a)
, (127)

where λ ≤ 1 by the assumptions of the lemma, and substitut-
ing λ yields:

F ≥ F (x∗)−d
η

(
1 + ln

η(b− a)
d

)
= F (x∗)−d

η
ln
ηe(b− a)

d
.

(128)
Rearranging yields the desired result. �

B. Proof of Lemma 4

During the course of the derivation below, in order to
optimize the asymptotical form of the loss (up to constant
factors), some simplifying assumptions on the parameters,
which hold asymptotically for large enough n are made. For
finite n these assumptions might lead to suboptimal results.
The assumptions are collected and discussed at the end. All
integrals below are by default over the unit simplex Q ∈ ∆X .

In the block-wise variation setting (Section III), the target
was to control the growth rate of the regret. Here, at each block
i, by (37) the gain of the competitor using prior Q is miFi(Q)
(bits), while the universal scheme sends a fixed number of bits
K. Therefore the gain of the competitor miFi(Q) and the
instantaneous regret miFi(Q)−K are related by a constant,
and it is more convenient to base the derivation on the gain
rather than the regret. The potential function Φ will be used
as an approximation of the max in (37).

Denote the cumulative gain of the competitor with prior Q
as:

Gi(Q) ,
i∑

j=1

mjFj(Q), (129)

And the potential function of Gi(Q) as:

Φi , Φ(Gi(Q)). (130)

Note that Φi is not a function of Q due to the integration over
Q performed by Φ(·). Now wi(Q) can be written as:

wi(Q) =
eηGi−1(Q)

Φi−1
. (131)

The growth of the potential is bounded by:

Φi =
∫
eηGi(Q)dQ

=
∫
eηGi−1(Q)eηmiFi(Q)dQ

(131)=
∫

Φi−1wi(Q)eηmiFi(Q)dQ

(26)
≤ Φi−1

∫
wi
[
1 + ηmiFi(Q) + η2m2

iFi(Q)2
]
dQ

= Φi−1

[
1 + η

∫
wimiFidQ+ η2

∫
wim

2
iF

2
i dQ

]
,

(132)

where in the last inequality Lemma 1 was used, and it was
assumed that ηmiFi(Q) ≤ 1. The dependence of Fi and wi
on Q is suppressed for brevity. In the following, the integrals∫
wimiFidQ and

∫
wim

2
iF

2
i dQ are bounded. The property

that a badly chosen prior may cause the iterative system to get
stuck (not transmitting any block) translates into the fact that
without placing any limitations on Q̂i, the competitor’s gain,
miFi(Q) may be unbounded, since mi might be indefinitely
large while Fi(Q) can be any positive value. This is prevented
by mixing with the uniform prior, which enables us to link
Fi(Q) with Fi(Q̂i). Since in the context of the lemma Fi(Q)
is not assumed to be the mutual information, the bound below
is slightly looser than Shulman and Feder’s (45), but is based
on the same technique [19], and only assumes concavity.

Define x+ z as modulo-addition over the set X , and write
U(x) = 1

|X |
∑
z∈X Q(x + z) for any Q, i.e. express the

uniform prior as the mean of all cyclic rotations of Q. Using
concavity and non-negativity of F :

Fi(U) = Fi

(
1
|X |

∑
z∈X

Q(x+ z)

)

≥ 1
|X |

∑
z∈X

Fi (Q(x+ z)) ≥ Fi (Q)
|X |

.

(133)

Because the prior (35) has the structure Q̂i = (1−λ)Q′+λU ,
by the concavity of Fi:

∀Q, i : Fi(Q̂i) ≥ (1− λ)Fi(Q̂′) + λFi(U)

≥ λFi(U)
(133)
≥ λ

|X |
Fi(Q),

(134)
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Using (134) in conjunction with (39) yields:

miFi(Q)
(134)
≤ |X |

λ
miFi(Q̂i)

(39)
≤ |X |

λ
K,

(135)

which yields a bound on the competitor gain in each block. Let
us now bound the two integrals appearing in (132). Starting
with the first integral, using the concavity of Fi:

K
(39)
≥ miFi(Q̂i)

(35)= miFi

(
(1− λ)

∫
wi(Q)QdQ+ λU

)
≥ mi(1− λ)

∫
wi(Q)Fi(Q)dQ+ λmiFi(U)

≥ mi(1− λ)
∫
wi(Q)Fi(Q)dQ,

(136)

which yields ∫
wi(Q)miFi(Q)dQ ≤ K

1− λ
, (137)

The second order term is bounded as follows:∫
wi(Q)m2

iF
2
i (Q)dQ =

∫
wi(Q)(miFi(Q))(miFi(Q))dQ

(135)
≤ |X |

λ
K ·

∫
wi(Q)miFi(Q)dQ

(137)
≤ |X |

λ
K · K

1− λ
.

(138)

Recall that in the classical weighted average predictor
[13], the vector product of the instantaneous regret and the
weighting function is guaranteed to be non positive (Black-
well condition). Similarly in Section III this product satis-
fies

∫
w(Q)ri(Q)dQ ≤ 0 (see (23)). In the present case,

defining ri(Q) = miFi(Q) − K, then by (137) one obtains∫
w(Q)ri(Q)dQ ≤ K

1−λ −K = K·λ
1−λ , i.e. due to the inclusion

of the uniform prior (which is needed for miFi to be bounded),
this integral may be positive, although arbitrarily small. Thus,
a price in the first order term is payed, in order to be able to
bound the second order term.

Plugging the bounds (137), (138) into (132) yields:

Φi
(132)
≤ Φi−1

[
1 + η

∫
wimiFidQ+ η2

∫
wim

2
iF

2
i dQ

]
(137),(138)

≤ Φi−1

[
1 + η · K

1− λ
+ η2 |X |

λ
K · K

1− λ

]
(26)
≤ Φi−1e

η· K1−λ (1+
η·K·|X|

λ )

≤ . . . ≤ Φ0e
η· K·i1−λ (1+

η·K·|X|
λ ).

(139)

In the last step the same relation was inductively applied. Us-
ing (139) this yields a bound on Φ(GB+1(Q)), and Lemma 2
is used to relate this bound to GB+1(Q) and to the target rate.
RT = 1

n maxQGB+1(Q). The dimension is d = dim(∆X ) =
|X | − 1. From (37):

0︸︷︷︸
,a

≤ GB+1(Q) ≤ n ·max(RT , Imax)︸ ︷︷ ︸
,b

. (140)

The reason for setting the upper bound as b = n ·
max(RT , Imax) rather than just n · RT , is technical, as this
simplifies the conditions required to meet the requirements of
the lemma. Satisfying η(b− a) ≥ d only requires η ≥ |X |−1

nImax
.

By Lemma 2 and (139):

GB+1(Q)
(29)
≤ 1

η
ln

Φ(GB+1(Q̃))
Φ(0)

+ nδ1(RT )

=
1
η

ln
ΦB+1

Φ0
+ nδ1(RT )

(139)
≤ K · (B + 1)

1− λ

(
1 +

η ·K · |X |
λ

)
+ nδ1(RT ),

(141)

where

δ1(RT ) ,
|X | − 1
nη

· ln
(
ηenmax(RT , Imax)

|X | − 1

)
, (142)

is the redundancy term introduced by Lemma 2. Bounding
RT using (141), while substituting K(B + 1) = KB +K =
nR+K, yields:

RT =
1
n

max
Q

GB+1(Q)

≤
(
R+

K

n

)
1

1− λ

(
1 +

η ·K · |X |
λ

)
+ δ1(RT ).

(143)

After rearrangement the following bound on R is obtained:

R ≥ (RT − δ1(RT )) · (1− δ2)− δ3, (144)

where

1− δ2 ,

(
1 +

η ·K · |X |
λ

)−1

· (1− λ) (145)

δ3 ,
K

n
. (146)

The rest of the proof of Lemma 4 is an algebraic derivation
focused on simplifying and optimizing the bound above. The
lower bound on R in the RHS of (144) is increasing with
respect to RT . This is since ∂

∂RT
δ1 is zero for RT ≤ Imax

and for RT ≥ Imax the derivative ∂
∂RT

δ1 is |X |−1
nηRT

, which
by the assumption η ≥ |X |−1

nImax
is smaller than 1. Therefore

∂
∂RT

(RT−δ1(RT )) ≥ 0. In order to optimize the parameters, it
is assumed for now that RT ≤ Imax and bound the difference
R−RT . Using 1

1+t ≥ 1− t:

1− δ2 ≥
(

1− η ·K · |X |
λ

)
· (1− λ) ≥ 1− η ·K · |X |

λ
− λ.

(147)
Using (144), under the assumption RT ≤ Imax yields:

R ≥ (RT − δ1(Imax)) · (1− δ2)− δ3
≥ RT − δ1(Imax)− δ2 · Imax − δ3

≥ RT − δ1(Imax)− η ·K · |X | · Imax

λ
− λ · Imax − δ3,

(148)

To further simplify δ1(Imax), assume that η ≤ |X |−1
eImax

and

therefore ln
(
ηemax(RT ,Imax)

|X |−1

)
≤ 0, and δ1(Imax) ≤ |X |−1

nη ·
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ln (n). Using these simplifications the RHS of (148) is further
bounded by RT −∆pred where

∆pred = Imax ·λ+
c0
λ︸︷︷︸

,a1

·η+(|X | − 1) · ln(n)
n︸ ︷︷ ︸

,b1

·1
η

+ δ3, (149)

and c0 = K · |X | · Imax.
Applying Lemma 3 to the optimization of the two terms

depending on η in (149) (marked a1, b1, with powers α =
1, β = 1) yields:

η∗ =
√
b1
a1

=

√
|X | − 1
c0

· ln(n) · λ
n

, (150)

and

∆pred

∣∣∣
η=η∗

= Imax · λ+ 2
√
a1b1 + δ3

= Imax · λ+ 2

√
c0(|X | − 1) · ln(n)

nλ
+ δ3.

(151)

Substituting c0 yields ∆pred and η stated in the Lemma.
Now, the derivation involving equations (148) – (151) assumes
RT ≤ Imax. Since the lower bound (144) on R is increasing
with respect to RT , in the case that RT > Imax the lower
bound on R is guaranteed to be better than the lower bound
R ≥ Imax−∆pred attained for RT = Imax (in other words, the
RHS of (144) for RT = Imax is at least Imax−∆pred). There-
fore the bound can be stated as R ≥ min(RT , Imax)−∆pred.

The various assumptions made along the way are now
considered. For most of these, the technique used in the proof
of Theorem 1 applies, i.e. showing that if the assumptions
do not hold, then (possibly under some simple conditions),
∆pred ≥ Imax and therefore the lemma holds in a void way
(since the RHS of (40) becomes non-positive).

In (132) it was assumed that ηmiFi(Q) ≤ 1. Using the
upper bound of (135) a sufficient condition is η |X |λ K ≤ 1. If
this condition doesn’t hold, i.e. η |X |λ K > 1, then the second
term in (149) satisfies c0

λ η = K·|X |η
λ ·Imax > Imax, so ∆pred >

Imax and the lemma holds in a void way. Before (149) it was
assumed that η ≤ |X |−1

eImax
. When the opposite is true, then

second term in (149) satisfies the c0
λ η = K·|X |η

λ · Imax >
K·|X |(|X |−1)

e·λ > 2
e · K > K

2 . By requiring K ≥ 2Imax it
follows that in this case the lemma is also true in a void way.
To use Lemma 2 it was required that η ≥ d

b−a = |X |−1
nImax

.
If the opposite is true, then the third term in (149) satisfies
(|X |−1)·ln(n)

ηn > Imax ln(n), and thus if n ≥ e, ∆pred > Imax.
Therefore, by requiring n > e and K ≥ 2Imax, it follows that
if any of the assumptions made does not hold, the lemma is
true in a void way. This concludes the proof of Lemma 4. �

C. Proof of Lemma 6

In this proof log-s are natural base (information is measured
in nats). This does not change the results since all values
scale according to the base of the log-s. Also, all probabilities
and false probabilities are assumed to be non-zero. It is easy
to check that the results for zero probabilities follow by

replacing zeros with small probabilities and taking the limit
using p log p −→

p→0
0.

Non negativity Define p̆(y) =
∑
xQ(x)W̆ (y|x) and write:

−Ĭ(Q, W̆ ) =
∑
x,y

Q(x)W̆ (y|x) log

(
p̆(y)

W̆ (y|x)

)
log t≤t−1

≤
∑
x,y

Q(x)W̆ (y|x)

(
p̆(y)

W̆ (y|x)
− 1

)
=
∑
x

Q(x) ·
∑
y

p̆(y)−
∑
x,y

Q(x)W̆ (y|x)

= 1− 1 = 0.
(152)

Concavity with respect to Q: Denote as above p̆(y) =∑
xQ(x)W̆ (y|x) and write:

Ĭ(Q, W̆ ) =
∑
x,y

Q(x)W̆ (y|x) log
W̆ (y|x)
p̆(y)

=
∑
x,y

Q(x)W̆ (y|x) log W̆ (y|x)−
∑
y

p̆(y) log p̆(y).

(153)

The left hand term is linear with respect to Q. The function
t log t is convex in t (for all t ≥ 0), and p̆(y) is linear in
Q, therefore the right hand term is convex in Q, and so Ĭ is
concave with respect to Q.

Convexity with respect to W̆ : Let λi ≥ 0,
∑
λi = 1,

and W̆ (y|x) =
∑
i λiW̆i(y|x). It needs to be shown that

∆ , Ĭ(Q, W̆ ) −
∑
i λiĬ(Q, W̆i) ≤ 0. Define the respec-

tive output distributions as p̆i(y) =
∑
xQ(x)W̆i(y|x) and

p̆(y) =
∑
xQ(x)W̆ (y|x) =

∑
i λip̆i(y), then

∆ = Ĭ(Q, W̆ )−
∑
i

λiĬ(Q, W̆i)

=
∑
x,y

Q(x) W̆ (y|x)︸ ︷︷ ︸∑
i λiW̆i(y|x)

log

(
W̆ (y|x)
p̆(y)

)

−
∑
x,y,i

λiQ(x)W̆i(y|x) log

(
W̆i(y|x)
p̆i(y)

)

=
∑
x,y,i

λiQ(x)W̆i(y|x) log

(
W̆ (y|x) · p̆i(y)
W̆i(y|x) · p̆(y)

)

≤
∑
x,y,i

λiQ(x)W̆i(y|x)

(
W̆ (y|x) · p̆i(y)
W̆i(y|x) · p̆(y)

− 1

)

=
∑
x,y,i

λiQ(x) · W̆ (y|x) · p̆i(y)
p̆(y)

−
∑
x,y,i

λiQ(x)W̆i(y|x)

=
∑
x,y

Q(x)W̆ (y|x)−
∑
x,y

Q(x)W̆ (y|x) = 0.

(154)

Boundness: From
∑
x′ Q(x′)W̆ (y|x′) ≥ W̆ (y|x)Q(x) it

follows that log
(

W̆ (y|x)∑
x′ Q(x′)W̆ (y|x′)

)
≤ log

(
W̆ (y|x)

Q(x)W̆ (y|x)

)
=
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log
(

1
Q(x)

)
. Now write:

Ĭ(Q, W̆ ) ,
∑
x,y

Q(x)W̆ (y|x) log

(
W̆ (y|x)∑

x′ Q(x′)W̆ (y|x′)

)

≤
∑
x,y

Q(x)W̆ (y|x) log
(

1
Q(x)

)
≤
∑
x

σQ(x) log
(

1
Q(x)

)
= σ ·H(Q) ≤ σ · log |X |.

(155)

D. Proof of Lemma 8 and Lp bounds on differences of
entropies and capacities

Below is a proof of Lemma 8, relating the Lp norm
difference of two channels (one of which may be a false
distribution) to the difference in capacities. Two intermediate
results that are captured in Lemmas 11,12 are an extension of
the L1 bound of Cover & Thomas to false distributions and a
trivial extension of the same bound to Lp norms.

Let us begin with the following L1 bound on entropy from
Cover & Thomas [23]:

Lemma 10 (L1 bound on entropy, Theorem 7.3.3 of [23]).
Let Q,P be two distributions on the finite alphabet Y with
‖Q− P‖1 ≤ 1

2 , then

|H(Q)−H(P )| ≤ −‖Q− P‖1 · log
(
‖Q− P‖1
|Y|

)
. (156)

Also note that the function −t log t
|Y| is monotonous non

decreasing for t ≤ e−1|Y|, as can be verified by differentia-
tion. The first step is to extend the lemma to a case where one
of P,Q is a false distribution. In Cover and Thomas’ proof,
the first step is to write entropy as H(P ) =

∑
y f(P (y))

where f = −t log t and to show that for all 0 ≤ v ≤ 1
2

and 0 ≤ t ≤ 1 − v, the difference in f is bounded by
|f(t+ v)− f(t)| ≤ v log v. Here t represents the minimum of
P (y), Q(y) for a certain y, v the absolute difference, and t+v
the maximum of P (y), Q(y). Then, the difference in entropy
is bounded by the sum of the absolute values, this bound is
substituted in the summation, and convexity arguments are use
to bring it to the desired form. The only step that needs to be
modified is showing that |f(t + v) − f(t)| ≤ v log v, where
now t is no longer bounded to t ≤ 1−v. It can be verified by
differentiating the function g(t) = f(t+v)−f(t) with respect
to t that the derivative is always negative for v > 0. In addition,
g(0) > 0, therefore the maximum absolute of this function,
which is the absolute value of either the the maximum or the
minimum, occurs at either end of the region to which t is
limited. In the original proof this yields |f(t + v) − f(t)| =
|g(t)| ≤ max(|g(0)|, |g(1 − v)|) = max(f(v), f(1 − v)) =
−v log v (notice that f(0) = f(1) = 0). Here, since one of
P,Q is a legitimate distribution, t ≤ 1 (as the minimum of
the two) the following holds instead: |f(t + v) − f(t)| =
|g(t)| ≤ max(|g(0)|, |g(1)|) = max(f(v),−f(1 + v)). As
shown below, limiting v ≤ 1

4 leads to f(v) ≥ −f(1 + v), and
therefore the bound |f(t+ v)− f(t)| = |g(t)| ≤ f(v) applies

as in the original proof and Cover & Thomas’ result holds.
To show this, consider the function g(v) = −v ln v − (v +
1) ln(v + 1). This function is 0 for v = 0, and the derivative
is g′(v) = − ln v− 1− ln(v+ 1)− 1 = − ln(v(v+ 1)e2), it is
positive in a certain interval (0, v1) and negative for v > v1,
and therefore it crosses 0 only once. Calculating this function
for v = 1

4 yields a positive value, therefore it is positive for all
v ≤ 1

4 . This variation of Cover & Thomas result is captured
in the following lemma:

Lemma 11 (L1 bound on false entropy difference). Let P
be a distribution on the finite alphabet Y and P̆ be a false
distribution on the same alphabet, with ‖P̆ − P‖1 ≤ 1

4 , then

|H̆(P̆ )−H(P )| ≤ −‖P̆ − P‖1 log

(
‖P̆ − P‖1
|Y|

)
, (157)

where the false entropy H̆ is defined as

H̆(P̆ ) , −
∑
y∈Y

P̆ (y) log P̆ (y). (158)

Let us first convert the bound to the Lp norm (p ≥ 1). To
relate the norms, Hölder’s inequality is used: for two vectors
a,b,

∑
i |aibi| ≤ ‖a‖p · ‖a‖p, where p−1 = 1 − p−1 is the

Hölder conjugate of p and by convention for p =∞ the inverse
is 1/p = 0 (note that p ≥ 1 and the conjugate of p = ∞ is
p = 1). Then,

‖P̆ − P‖1 =
∑
y

1 · |P̆ (y)− P (y)| ≤ ‖P̆ − P‖p · ‖1‖p

= ‖P̆ − P‖p · (
∑
y∈Y

1p)1/p = ‖P̆ − P‖p · |Y|1/p

= ‖P̆ − P‖p · |Y|1−1/p.
(159)

Assuming ‖P̆ − P‖p · |Y|1−1/p ≤ e−1|Y| and using the
monotonicity of the bound of Lemma 11, write:

|H̆(P̆ )−H(P )| ≤ −‖P̆ − P‖1 log

(
‖P̆ − P‖1
|Y|

)

≤ −‖P̆ − P‖p · |Y|1−1/p log

(
‖P̆ − P‖p
|Y|1/p

)
, fp

(
‖P̆ − P‖p

)
,

(160)

where
fp(t) = −t · |Y|1−1/p log

(
t

|Y|1/p

)
. (161)

fp(t) is concave with respect to t (because −t ln t is concave
in t ≥ 0), and is monotonically non decreasing for t ≤
e−1|Y|1/p, as can be verified by differentiation. Furthermore,
to meet the requirement ‖P̆ − P‖1 ≤ 1

4 of Lemma 11, it is
sufficient that ‖P̆−P‖p ·|Y|1−1/p ≤ 1

4 (by (159)), and in addi-
tion prior to (160) it was assumed that ‖P̆−P‖p ≤ e−1|Y|1/p,
however it is easy to see that this condition is dominated by the
previous one. Since 1− 1/p ≥ 1, and |Y| > 1, it is sufficient
to require ‖P̆ − P‖p ≤ 1

4 . This result is summarized below:
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Lemma 12 (Lp bound on false entropy difference). Let p ≥ 1,
P be a distribution on the finite alphabet Y , and P̆ be a false
distribution on the same alphabet with ‖P̆ −P‖p ≤ 1

4 , then:

|H̆(P̆ )−H(P )| ≤ fp
(
‖P̆ − P‖p

)
, (162)

where fp is defined in (161), and it is concave and monoton-
ically non-decreasing for t ≤ 1

4 .

Now, write the false mutual information (51) as a difference
of false entropies (158):

Ĭ(Q, W̆ ) = H̆

(∑
x

W̆ (y|x)Q(x)

)
−
∑
x

Q(x)H̆(W̆ (y|x)).

(163)
The above is analogous to the equality I(X;Y ) = H(Y ) −
H(Y |X). For the channels W, W̆ define the difference as
δxy = W (y|x)−W̆ (y|x) and define the output distributions as
PY (y) =

∑
xW (y|x)Q(x) and P̆Y (y) =

∑
x W̆ (y|x)Q(x),

then by the triangle inequality:

|Ĭ(Q, W̆ )− I(Q,W )| ≤ |H(PY )−H(P̆Y )|

+
∑
x

Q(x)
∣∣∣H̆(W̆ (y|x))−H(W (y|x))

∣∣∣ . (164)

Let us begin with the difference H(PY ) − H̆(P̆Y ). The Lp
bound of Lemma 12 yields:

H(PY )−H(P̆Y ) ≤ fp(‖PY − P̆Y ‖p). (165)

Using the triangle inequality:

‖PY − P̆Y ‖p = ‖
∑
x

Q(x)(W (y|x)− W̆ (y|x))‖p

= ‖
∑
x

Q(x)δxy‖p

≤
∑
x

‖Q(x)δxy‖p,y

=
∑
x

Q(x)‖δxy‖p,y,

(166)

where the notation ‖�‖p,y is used to emphasize that the norm
operation is with respect to y only. Using Hölder’s inequality,

∑
x

Q(x)‖δxy‖p,y ≤ ‖Q(x)‖p ·
∥∥∥‖δxy‖p,y∥∥∥

p

=

(∑
x

Q(x)p
)1/p

· ‖δxy‖p

p≥1

≤

(∑
x

Q(x)

)1/p

· ‖δxy‖p

= ‖δxy‖p.

(167)

Assuming ‖δxy‖p ≤ 1
4 , fp is monotonously increasing, and

combining the inequalities above:

H(PY )− H̆(P̆Y ) ≤ fp (‖δxy‖p) . (168)

For the second part of (164), by the Lp bound:∣∣∣H̆(W̆ (y|x))−H(W (y|x))
∣∣∣ ≤ fp(‖δxy‖p,y). (169)

Using the concavity and monotonicity of fp:∑
x

Q(x)
∣∣∣H̆(W̆ (y|x))−H(W (y|x))

∣∣∣
≤
∑
x

Q(x)fp(‖δxy‖p,y)

≤ fp

(∑
x

Q(x)‖δxy‖p,y

)
(167)
≤ fp(‖δxy‖p),

(170)

where the monotonicity of fp is again guaranteed by the
condition ‖δxy‖p ≤ 1

4 . Plugging (168) and (170) into (164)
yields: ∣∣∣Ĭ(Q, W̆ )− I(Q,W )

∣∣∣ ≤ 2fp (‖δxy‖p) . (171)

which proves the bound on mutual information. The bound
on capacity is trivially obtained from (171) above by writing
Ĭ(Q, W̆ ) ≥ I(Q,W ) − 2fp (‖δxy‖p) and maximizing both
sides with respect to Q (and similarly for the other direction).
�

E. Proofs of small Lemmas

Proof of Lemma 1: It need to be shown that 1 + x ≤ ex ≤
1 + x+ x2. Using a finite tailor series yields:

ex = 1 + e0 · x+ 1
2e
tx2, (172)

where t ∈ [0, x]∪[x, 0] is a point between 0 and x. This proves
the lower bound. Also, for x ≤ 0 since et ≤ 1 this also proves
the upper bound. For 0 < x ≤ 1, the right inequality can be
made tighter, by writing the full Tailor expansion:

ex =
∞∑
m=0

1
m!
xm = 1 + x+

∞∑
m=2

1
m!
xm

≤ 1 + x+ x2
∞∑
m=2

1
m!

= 1 + x+ x2(e1 − 1− 1)

= 1 + x+ (e− 2)x2 ≤ 1 + x+ x2.

(173)

�
Proof of Lemma 3: f(t) is continuous and differentiable

therefore f ′(t) = 0 at the maximum. Derivation yields f ′(t) =
αa ·tα−1−βb ·t−β−1, and f ′(t) = 0 yields the single solution
t∗ stated in the Lemma. This is a single maximum since f ′(t)
is positive for t < t∗ and negative for t > t∗. �

F. Proof of Theorem 2: the optimality of averaged channel
capacity

Below is a proof of Theorem 2, presented in §IV-A (re-
garding the optimality of C(W )). For a given sequence Wn

1 ,
consider the “permutation” channel generated by uniformly
selecting a random permutation Π of the indices i = 1, . . . , n,
rearranging the sequence Wn

1 to a permuted sequence Ti =
Wπi , and applying the channel Pr(Y|X, π) =

∏
i Ti(Yi|Xi)

to the input (i.e. using the channels Wi in permuted order).
Suppose there is a system achieving the rate R(Wn

1 ) − ∆
with probability 1 − δ and error probability ε. Since this
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rate is fixed for all drawing of Π, the system can guarantee
the rate R(Wn

1 ) − ∆ a-priori (with probability 1 − δ), and
the rate-adaptive system can be converted to a fixed-rate
system, delivering a message m of n(R(Wn

1 ) − ∆) bits,
with probability of error at most ε + δ. Once the discussion
is constrained to the permutation channel induced by the
deterministic sequence Wn

1 , this sequence can be assumed to
be known to the transmitter and the receiver.

A standard application of Fano’s inequality [23, Theorem
2.10.1] yields:

I(m; Y) = H(m)−H(m|Y)
≥ n(R(Wn

1 )−∆)(1− (ε+ δ))− hb(ε+ δ).
(174)

Rearranging and using hb(p) ≤ 1:

R(Wn
1 ) ≤

1
nI(m; Y) + 1

n

1− ε− δ
+ ∆. (175)

The main part of the proof shows that approximately,
1
nI(m; Y) ≤ C(W ). Note that because of feedback, Xi may
be a function of m and Yi−1, and therefore I(Xn; Yn) does
not give a tight bound on the rate. As noted in the outline
presented in Section IV-A, if the channels Ti were selected
from Wn

1 with replacement, this result would be obvious,
since feedback would not be helpful. In the permuted channel,
a system with feedback can use past channel outputs to gain
some knowledge about the future behavior of the channel. The
point of the proof is to show that there is no considerable gain
from this knowledge, and even a knowledge of the actual list of
channels that were already picked does not change the mutual
information considerably.

Denote by Π the random permutation and by π a specific
instance of the permutation. Let us bound the mutual infor-
mation as follows:

I(Yn; m) =
n∑
i=1

I(Yi; m|Yi−1)

=
n∑
i=1

(
H(Yi|Yi−1)−H(Yi|Yi−1,m)

)
(a)

≤
n∑
i=1

(
H(Yi)−H(Yi|Yi−1,m,Πi−1, Xi)

)
(b)
=

n∑
i=1

(
H(Yi)−H(Yi|Πi−1, Xi)

)
,

(176)

where (a) is because conditioning reduces entropy (used
twice), and (b) is since Yi−1,m ↔ T i−1, Xi ↔ Yi (in
other words, πi−1, Xi gives all relevant information on Yi).
This can be seen from the functional dependence graph in
Fig.5. Let Zi be a random variable generated by passing Xi

through the channel W (i.e. Pr(Zn1 |Xn
1 ) =

∏n
i=1W (Zi|Xi)).

In the following it is shown that H(Yi) ≈ H(Zi) and
H(Yi|Πi−1, Xi) ≈ H(Zi|Xi).

Given Πi−1, the channel law between Xi and Yi is a random
pick from the group of n−i+1 channels that are not included

m

Xi

Xi−1

π

T i−1Yi−1

Yi Ti

πi−1

πi

Wn
1

Fig. 5. A dependence graph for the variables of the permutation channel in
Appendix F. Each node is a (potentially random) function of the nodes with
arrows pointing toward it.

in {Πj}i−1
j=1:

Pr(Yi = y|Πi−1, Xi = x)

=
n∑
k=1

Pr(Yi = y|Πi−1,Πi = k,Xi = x)

· Pr(Πi = k|Πi−1, Xi = x)

=
∑

k 6∈{Πi−1}

Wk(y|x) · 1
n− i+ 1

,WΠi−1(y|x).

(177)

The average channel given the past indices Wπi−1(y|x) is an
average of n− i + 1 values 0 ≤ Wk(y|x) ≤ 1. Note that the
indices k belong to Πn

i , so the notation may be confusing, but
it is used to stress the causal dependence on Πi−1.

Considering the random variable WΠi−1(y|x) generated by
calculating this channel over all drawings of Π, the set k 6∈
{Πi−1} becomes a random set of n−i+1 distinct indices from
1, . . . , n, chosen uniformly from all such sets. WΠi−1(y|x) is
an average of n − i + 1 values 0 ≤ Wk(y|x) ≤ 1, sampled
uniformly without replacement from the set {Wk(y|x)}nk=1

(for any specific x, y). It was shown by Hoeffding [17,
§6] that averages of variables sampled without replacement
obey the same bounds [17, Theorem 1] with respect to
the probability to deviate from their mean, as independent
random variables. Specifically, applying Hoeffding’s bounds
(combining Theorem 1 with Section 6 in [17]), and using
E
[
WΠi−1(y|x)

]
= W , yields:

Pr{|WΠi−1(y|x)−W | ≥ t} ≤ 2e−2(n−i+1)t2 . (178)

Using the union bound over all |X | · |Y| values of x, y (see
the proof of Proposition 3), yields:

Pr{‖WΠi−1 −W‖∞ ≥ t} ≤ 2|X | · |Y|e−2(n−i+1)t2 , (179)

where the L∞ norm is over x, y. To further simplify, pick
a small value ε0, and from now on, assume i ≤ (1 − ε0)n.
Substituting in (179):

Pr{‖WΠi−1 −W‖∞ ≥ t} ≤ 2|X | · |Y|e−2ε0nt
2
, p, (180)

Since H(·) is uniformly continuous (see Lemma 12), for any
ε0 there is a t such that if ‖P1(y) − P2(y)‖∞ ≤ 2t then
|H(P1) − H(P2)| ≤ ε0. For a given ε0 choose the value of
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t such that this requirement is satisfied, so that together with
(180) it holds that:

∀x : Pr{|H(Wπi−1(·|x))−H(W )| ≤ ε0} ≥ 1− p. (181)

The following relation translates proximity in probability to
proximity of the expected values: if A,B ∈ [0, Amax] are two
random variables satisfying Pr{|A − B| ≤ ε} ≥ 1 − p (for
some ε, p ∈ [0, 1]), then

∣∣E[A]− E[B]
∣∣ =

∣∣∣E[(A−B) · Ind(|A−B| ≤ ε)]

+ E[(A−B) · Ind(|A−B| > ε)]
∣∣∣

≤ E[|A−B| · Ind(|A−B| ≤ ε)]
+ E[|A−B| · Ind(|A−B| > ε)]

≤ ε+ E[Amax · Ind(|A−B| > ε)]
≤ ε+Amax · p.

(182)

Applying this inequality to bound H(Yi|Πi−1, Xi) yields:

H(Yi|Πi−1, Xi) =
∑
x,π

H(Yi|Πi−1 = πi−1, Xi = x)

· Pr(Π = π,Xi = x)
(177)=

∑
x,π

H(Wπi−1(·|x)) · Pr(Π = π,Xi = x)

= E
[
H(WΠi−1(·|Xi))

]
(181),(182)
≥ E

[
H(W (·|Xi))

]
− ε0 − log |Y| · p

= H(Zi|Xi)− ε0 − log |Y| · p.
(183)

In the following it is shown that the distributions of Yi and
Zi are similar (note that they are not equal, due to the possible
dependence of Xi on Πi−1).

|Pr(Yi = y)− Pr(Zi = y)|
=
∣∣E [Pr(Yi = y|Πi−1, Xi)

]
− E [Pr(Zi = y|Xi)]

∣∣
(177)=

∣∣E [WΠi−1(y|Xi)
]
− E

[
W (y|Xi)

]∣∣ (180),(182)
≤ t+ p.

(184)

Since for any ε0, t it holds that p −→
n→∞

0 (180), n

can be chosen large enough such that p ≤ t and yield
|Pr(Yi = y)− Pr(Zi = y)| ≤ 2t. Then, by the selection of
t above (before (181)):

|H(Yi)−H(Zi)| ≤ ε0. (185)

Returning to (176), and treating the first (1−ε0)n and the last

ε0n symbols separately, yields:

I(Yn; m) ≤
n∑
i=1

(
H(Yi)−H(Yi|Πi−1, Xi)

)
(183),(185)
≤

(1−ε0)n∑
i=1

[
(H(Zi) + ε0)

− (H(Zi|Xi)− ε0 − log |Y| · p)
]

+ ε0 · n · log |Y|

≤
n∑
i=1

I(Zi;Xi) + n (2ε0 + (ε0 + p) · log |Y|)︸ ︷︷ ︸
δ0

≤ n · C(W ) + nδ0.
(186)

Because ε0 is a parameter of choice, and for any ε0, t it holds
that p −→

n→∞
0 (180), δ0 can be made as small as desired for

n large enough. Returning to (175):

R(Wn
1 ) ≤ C(W ) + δ0 + 1/n

(1− ε− δ)
+ ∆

≤ (C(W ) + δ0 + 1/n)(1 + ε+ δ) + ∆

≤ C(W ) + (δ0 + 1/n)(1 + ε+ δ) + (ε+ δ)Imax + ∆︸ ︷︷ ︸
δ1

,

(187)

where Imax is defined in (19). Since by Definition 1, the above
must hold for every ε, δ,∆, for n large enough, and δ0 −→

n→∞
0

(see (186) and the discussion following it), δ1 can be made as
small as desired by taking n→∞. This concludes the proof
of Theorem 2. �

G. Proof of Lemma 5

Using the assumptions of Section IV-D, Fi(Q) = I(Q,W i)
satisfies the conditions of the lemma. The lemma assumes
there are B+ 1 blocks and the rate is KB

n , which corresponds
to a case where the last block was not decoded, however it
holds as a lower bound even if the last block was decoded.
Let us optimize the value of λ. Starting from (41):

∆∗pred(λ) =
K

n
+ Imax · λ+ c1

√
ln(n)
n︸ ︷︷ ︸

b2

λ−
1
2 , (188)
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λ is determined using Lemma 3 (with α = 1, β = 1
2 ) which

yields:

∆∗pred(λ∗) =
(
β

α

) α
α+β

[
1 +

α

β

]
· I

β
α+β
max · b

α
α+β
2 +

K

n

= 3 · 2− 2
3 · I

1
3
max ·

(
c1

√
ln(n)
n

) 2
3

+
K

n

(42)= 3 (KX|(|X | − 1))
1
3 I

2
3
max ·

(
ln(n)
n

) 1
3

+
K

n

≤
(
K

n

) 1
3
·

3 (|X | · Imax)
2
3 ln

1
3 (n) +

(
K

n

) 2
3


(a)

≤
(
K

n

) 1
3
· 4 · (|X | · Imax)

2
3 ln

1
3 (n)

= 4 ·K
1
3 · |X |

2
3 · I

2
3
max ·

(
ln(n)
n

) 1
3

, ∆pred,

(189)

where in (a) it was assumed that K ≤ |X | · n · Imax. If the
contrary is true, the first term in (188) yields ∆pred >

K
n >

Imax and the theorem is true in a void way. Similarly, one
does not have to worry about the case λ∗ > 1 since, also in
this case, ∆pred > Imax due to the second term in (188).

If the conditions of Lemma 4 are satisfied, then for all Q
(40):

R ≥ min

(
B+1∑
i=1

mi

n
· I(Q,W i)−∆pred, Imax

)

≥ I

(
Q,

B+1∑
i=1

mi

n
W i

)
−∆pred

= I
(
Q,W

)
−∆pred,

(190)

where the convexity of I(Q,W ) with respect to the channel
W was used. Maximizing both sides of (190) with respect to
Q yields the desired result (47).

The conditions of Lemma 4 on n,K remain as conditions
of the theorem. The application of Lemma 3 in (189) yields
the following value of λ:

λ∗ =
(

b2β

Imaxα

) 1
α+β

=

 1
2c1

√
ln(n)
n

Imax


2
3

=
(
K · |X |(|X | − 1) · I−1

max ·
ln(n)
n

) 1
3

.

(191)

This concludes the proof of Lemma 5. �

H. Channel knowledge compared to channel estimation

This section demonstrates the claim made in Section IV-A,
that even imposing on the synthetic problem only the limitation
that the past channels are not given, but need to be estimated,
leads to the conclusion C2 is not attainable.

This is shown by an example, based on randomization of
the channel sequence. As in Section III, assume I(Q̂i,Wi) bits
are transmitted in time instance i (in other words, this is the

0

1

2

X

Y

0

1

Wsr(Y |X)

r ∈ {0, 1, 2} s ∈ {0, 1}
Chosen once Chosen i.i.d

Fig. 6. An illustration of the generation of the channels Wsr in Example 4.

gain obtained in retrospect for choosing Q̂i), however, instead
of knowing the full channel sequence, the predictor is only
allowed to base its decisions on measurements of the channel
input and output, i.e. on the values of (Yi−1

1 ,Xi−1
1 ) where Yi

is the result of Wi operated on Xi. It would make sense to
also require that Xi be distributed Q̂i(x) but this assumption
is not required for the counter example.

Example 4. Consider a ternary input binary output channel.
The channel is chosen randomly, and the average gain of the
predictor and the reference is considered (since the average
regret is a lower bound for the maximum regret). The basic

channels are W1 =
[

1
2 0 1
1
2 1 0

]
, W2 =

[
1
2 1 0
1
2 0 1

]
. Note

that in the two channels, the first input is useless, and using
only the two last inputs yields a rate of 1 bit/use. Now, add
to this family of channels all 3 possible cyclic rotations of
the inputs, and term the channel W r

s (s = 1, 2; r = 1, 2, 3).
The resulting channels are depicted in Fig. 6. The sequence
of channels is generated as follows: choose r randomly (one
for the entire sequence), and choose a random (uniform, i.i.d.)
sequence of si-s. The competitor, knowing r, easily selects a
prior that optimizes

∑
i I(Q,Wi), since W r

1 and W r
2 have the

same optimizer for each r, and achieves a rate of 1. Because
of the random generation of the sequence si, for any value
of r, the channel output Yi−1

1 is uniform i.i.d. over {0, 1}
and independent of the input. Therefore the predictor cannot
infer any information on r from the input-output distribution.
Therefore the best the predictor can do (in terms of optimizing
for the worst-case r), is place a uniform prior over all 3 inputs,
and therefore obtain a rate of 2

3 , i.e. a regret of 1
3 bit per

channel use. By increasing the size of the channel input, this
gap can be increased indefinitely.

The conclusion from the example is that C2 cannot be
attained universally when actual channel measurements are
used.

I. An analysis of the prior quantization approach

In Section VI-G an alternative was mentioned, of using a
“codebook” of priors, instead of the exponential weighting
scheme over the continuum of priors used in this paper.
Following is a rough analysis of this approach, for the block-
wise variation setting. First, let us determine the accuracy



31

required of the codebook. Suppose there are two priors Q1, Q2

with ‖Q1 − Q2‖∞ ≤ ∆, and for a certain channel W the
resulting output distributions are P1, P2 respectively (Pm =∑
xQm(x)W (y|x),m = 1, 2). Write I(Qm,W ) = H(Pm)−∑
xQm(x)H(W (·|x)) (output entropy minus output entropy

given the input). Since by definition ‖P1−P2‖∞ ≤ |X |·‖Q1−
Q2‖∞, by using Lemma 12, |H(P1)−H(P2)| ≤ f∞(|X |·∆).
Since the second term in I(Qm,W ) may change by at most
log |X | · ∆, then |I(Q1,W ) − I(Q2,W )| ≤ f∞(|X | · ∆) +
log |X | ·∆ , ∆I . Therefore, in order to bound the loss due to

the codebook quantization to ∆I = O
(

lnn
n

) 1
2 , it is required

that ∆ = O(n−
1
2 ) (here, Q1 represents the any prior, and Q2

represents the closest point in the codebook). To have a density

of O(n−
1
2 ) per dimension, N = O

(
n

1
2 (|X |−1)

)
points are

required. Now, since maxQ 1
n

∑n
i=1 I(Q,Wi) differs from

maxm∈1,...,N
1
n

∑n
i=1 I(Qm,Wi) by at most ∆I , one can

now consider the problem of competing against the N priors
(considered as N experts). The best normalized redundancy

than can be attained is O
(√

lnN
n

)
= O

(√
lnn
n

)
(see the

lower bound [13, Theorem 3.7] and the upper bound [13,
Corollary 2.2] in Cesa-Bianchi and Lugosi’s book). Note that
since the predictor loss and the codebook loss are balanced,
there is no potential gain from changing the codebook density.
However, the bound on ∆I is not necessarily tight.

J. Operation with any positive feedback rate

As mentioned, the scheme can be modified to operate with
any positive feedback rate. Feedback is used in the scheme
§IV-B for two purposes:

1) In order to report reception of a rateless block (using 1
bit per channel use)

2) In order to send the estimated averaged channel W̆i after
the end of each block (or alternatively, the next prior
Q̂i+1).

Suppose feedback is limited to rate RFB. Instead of reporting
successful reception on each symbol, the scheme may report
it each N1 = d 1

RFB
e symbols. The price would be wasting up

to N1 symbols per block, which essentially form an unused
“gap” between successful decoding of block i and the start of
block i+ 1.

Here is a coarse bound on the number of bits required to
represent the estimated averaged channel W̆i. W̆i is completely
specified to the transmitter by specifying the empirical distri-
bution P̂x,y(x, y) which takes at most (m + 1)|X |·|Y| values
for a block of length m. Since m ≤ n, the number of bits
is at most N2 = log |X | · |Y| · log(n + 1) = O(lnn). These
bits can be sent over N2

RFB
channel uses at the end of each

block, thus forming another unused “gap” between the blocks.
Overall the gap between blocks is N1 + N2

RFB
= O

(
logn
RFB

)
.

Since the maximum number of blocks grows sub-linearly in
n, the overall loss can be made negligible.

Specifically, the effect of the additional gap on the rate can
be analyzed using the same technique used to analyze the loss
in the last symbol (the transition between (71) and (74)), and

would effectively increase the term log
(
|X |
λ

)
in δ1 (66) by

a factor of the gap O(log n). Since K ∈ ω(log n) it is easy
to see that under the same setting of of the parameters of the
scheme, it still holds that δ1 −→

n→∞
0 and ∆C −→

n→∞
0, and

nearly at the same convergence rate.
A delay in the feedback link would simply mean that an

additional fixed gap will be added between the blocks, which
also does not prevent asymptotical convergence.

K. Generation of the prior using rejection sampling

As mentioned, implementation of the prediction methods
described in this paper, which are based on weighted average
over the unit simplex, require the calculation of integrals.
An alternative method is to generate the same results, using
a method based on rejection sampling. Instead of explicitly
calculating the predictor Q̂, the algorithm generates a random
variable X ∼ Q̂ (which can be used to generate a letter in the
random codebook), based on multiple drawings of uniform
random variables. The number of random drawings required
in this algorithm is polynomial in n, but still prohibitively
large, so unfortunately it is not practical.

First, any scalar random variable can be derived from
a uniform [0, 1] random variable by the inverse transform
theorem. A generation of the mixture of an exponentially
weighted and a uniform distribution such as in (35), only
requires to toss a coin with probability λ, which determines
whether X is generated using the exponentially weighted
distribution or using a uniform distribution. Therefore the
problem of generating the predictors described here (16),
(35), boils down to the following problem: generate a random
variable X distributed according to

Q̂ =
∫
w(Q)QdQ, (192)

where

w(Q) =
eηg(Q)∫

∆
eηg(Q)dQ

, (193)

and where g(Q) is a concave function and is bounded 0 ≤
g(Q) ≤ n · g0. ∆ is the unit simplex (which implicitly refers
to the alphabet X ). This should be accomplished without
computing any integrals.

All integrals below are over the unit simplex. The first
observation is that instead of generating an X from Q̂ it
is enough to generate a the probability vector Q randomly
with the probability distribution w(Q) and then generate an
X from the (specific) probability distribution Q. The last step
can be accomplished using the inverse transform theorem. In
this case:

Pr(X = x) = E
Q∼w(Q)

[Pr(X = x|Q)]

= E
Q∼w(Q)

[Q(x)] =
∫
Q(x)w(Q)dQ.

(194)

There remains the problem of generating Q ∼ w(Q). This is
accomplished by rejection sampling. I.e. by first generating a
random variable with a different distribution, and if it does
not satisfy a given condition, “rejecting” and re-generating it,
until the condition is satisfied.
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The first step is to generate a probability distribution P
uniformly over the unit simplex ∆. There are several algo-
rithms for uniform sampling over the unit simplex [35]. A
simple algorithm, for example, is normalizing a vector of i.i.d.
exponential random variables. Define G(Q) = eηg(Q), and
a(Q) = αG(Q). α is to be determined later on, under the
constraint ∀Q : α · G(Q) ≤ 1. Having generated P , toss a
coin with probability a(P ) for “accept”. If P is accepted, this
is the resulting random variable and Q = P . Otherwise, draw
P again and repeat the process. Let A denote the event of
acceptance, and fP denote the distribution of P which is the
uniform distribution over the simplex. The distribution of Q
equals the distribution of P given that it was accepted. I.e.:

fQ(q) = fP |A(q) =
Pr{A|P = q} · fP (q)

Pr{A}

=
Pr{A|P = q} · fP (q)∫
Pr{A|P = q} · fP (q)dq

=
a(q) · 1

vol(∆)∫
a(q) · 1

vol(∆)dq

=
G(q)∫
G(q)dq

=
eηg(q)∫
eηg(q)dq

= w(q),

(195)

which is the desired distribution.
To determine α, suppose the maximum of g(Q) is known.

This is usually possible since it is a convex optimization
problem. Even if this value is not known, a bound on this
value is sufficient. Suppose that Q∗ is the maximizer of
g(Q) and therefore also of G(Q). Then it is enough to set
α = 1

G(Q∗) = e−ηg(Q
∗).

An important question from implementation perspective is
the average number of iterations required. Since the probability
of acceptance Pr{A} in each iteration is fixed, the number of
iterations is a geometrical random variable, with mean N =

1
Pr{A} . By Lemma 2 one can relate G(Q∗) to EG(Q) and
bound the average number of iterations. Using the lemma:

g(Q∗) ≤ 1
η

ln


∫
eηg(Q)dQ

vol(∆)

+
d

η
ln
(ηeng0

d

)

≤ 1
η

ln (E [G(P )]) +
d

η
ln
(ηeng0

d

)
,

(196)

where d = |X | − 1 is the dimension of the unit simplex. The
following bound on α is obtained:

α = e−ηg(Q
∗) ≥ 1

E [G(P )]
·
(ηeng0

d

)−d
, (197)

and the average number of iterations can be bounded:

N =
1

Pr{A}
=

1
E [Pr{A|P}]

=
1

E [a(P )]
=

1
αE [G(P )]

≤
(ηeng0

d

)d
.

(198)

Since η is polynomial in n and tends to 0, N grows slower
than nd, however this number is still prohibitively large.

The algorithm described is summarized in Table II.

Generation of a random variable X ∼ Q̂, (192), (193)

1) Compute the maximum of g(Q) (a convex optimization prob-
lem), or a bound on it.

2) Set α ≤ e−ηmaxQ g(Q).
3) Draw Q uniformly over the unit simplex [35].
4) Toss a coin and with probability 1−αeηg(Q) return to step 3.
5) Draw X randomly according to the distribution Q(x).

TABLE II
AN ALGORITHM TO GENERATE X ∼ Q̂

L. Why “follow the leader” fails

As noted in Section III-B, the relation of the synthetic pre-
diction problem to prediction under the absolute loss function,
implies that the FL predictor cannot be applied to the “toy”
problem presented here. Below is a specific example to show
why FL fails, based on the channel defined in Section III-B.
Construct the following sequence of channels: the channel at
i = 1 is a mixture of W0 with probability 1

2 and a completely
noisy channel Y = Ber

(
1
2

)
. For this channel I(Q,W ) =

1
2I(Q,W0). At time i = 2, the best a-posteriori strategy is
q = 0. The sequence of channels from time i = 2 onward is
the alternating sequence (W1,W0,W1,W0, . . .). It is easy to
see that the resulting cumulative rates are linear functions of
q and thus the optimum is attained at the boundaries of [0, 1]
and qi = (0, 1, 0, 1, . . .). At each time, since the channel that
slightly dominates the past is opposite of the channel that is
about to appear, the FL predictor chooses the prior that yields
the least mutual information, and ends up having a zero rate
in time instances i = 2, . . . , n. On the other hand, by using a
uniform fixed prior, a competitor may achieve an average rate
of 1

2 over these symbols. Therefore the normalized regret of
FL would be at least 1

2 , and does not vanish asymptotically.
The problem with the FL predictor is that it takes a decision

based on a slight inclination of the cumulative rate toward one
of the extremes.

Note that for |X | = 4, |Y| = 2, I(Q,W ) does not satisfy
the Lipschitz condition required in [36, Theorem 1] for this
strategy to work.
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